New Brain-Based Learning Strategies Explored To Help Achieve Your Full Potential.

Rattlesnake R hike BPP_e11

Multimedia eLearning program by: David A. Johanson © All Rights

The author is a multimedia photographer, CTE instructor and a former Boeing scientific photographer.  For an alternative graphic presentation of this program, visit: http://sciencetechtablet.wordpress.com

“Learning is the Fountain of Youth, drink knowledge and stay young.” — DAJ

As an instructor in Career Technical Education, I’m continually developing eLearning, multimedia presentations, which help illuminate a spectrum of career and technical subjects. Finding and sharing new learning strategies, that are inspired from evidence based, neuroimaging and brain-mapping studies, is a dynamic process to help assist individuals in reaching their full learning potential.

Brain-based learning is a spectrum of teaching strategies, which uses neuroscience research on how the brain functions in achieving ideal development and potential.

Through evidence of how the brain learns, best practices are emerging that help accelerate individual learning performance. Cognitive science indicates emotional engagement is crucial for learning, regardless of the age of a student. Harnessing focussed attention forms the foundation for developing learning strategies.    Neural_Network_BPP_ae9763

On April 2, 2013, the Obama administration introduced The Brain Initiative (Brain Research through Advancing Innovative Neurotechnologies). Also known as the Brain Activity Map Project, its goal is to map the activity of every neuron in the human brain. Due to the accelerated advances in neuroscience, we can utilize this knowledge to better understand the dynamics and vast potential of the human brain.

 

Structural Changes In The Brain Enhances Learning

According to the author, M.D. Judy Will’s, book titled, Research-Based Strategies to Ignite Student Learning — two decades of advances in neuroscience technology have documented evidence-based, neuroimaging to determine the most effective ways to learn. Leading universities and world-class research centers are charting the dynamic frontier of how the brain retains and access learned content.

Rattle_Snake_Ridge_Pano_BPP_ea1

Apparently, specific structural changes in the brain enhances learning or storage and retrieval of content. The anatomy of the brain includes components known as lobes that perform various cognitive functions and are connected through neural pathways. These connecting circuits within the cerebrum are composed of cells, which can grow, due to learning activities.

Neurons, are nerve cells, where information is stored, they use synapses as a junction to transfer signals to other neurons. The networks of neurons are connected by extension, of cells, know as dendrites. Dendrites are used to transfer information, similarly to wires or cables within a computer that function to transfer data. Numbers and the size of dendrites increase when activated by a variety of learning experiences.

Photo-illustration of a neural network.

Photo-illustration of a neural network.

 

 

 

 

 

 

The brain’s plasticity is remarkably flexible in its ability to allow dendrites to reform and reorganize its networks of neurons. These pathways of dendrite-neurons are capable of decrease or robust increase, depending on the use of sensory activities, initiated by external auditory, visual or motor stimulus (multisensory). Various regions of the brain, will respond more actively, depending on the particular type sensory input. This is why various learning activities, which uses multi-mode sensory input can enhance retention and promote overall learning performance. 

ESD Strat Direct 2014 BPP_142

 

Using brain-mapping procedures, researchers have determined active regions of the brain where a person process specific types of information. In addition, neuroscientist can see how this data is more efficiently used by other components of the brain.

 

Increased Variations Of Memory Pathways, Accelerates Retention of Knowledge And Skills

Research indicates, that by using multiple pathways for sensory input, increases the number and size of dendrites, therefore, the brain’s plasticity allows for enhanced neuron networks. In conclusion, the more sensory inputs a learner can use to acquire information or content, the greater opportunity for the individual to recall that specific content.

The brain has a great redundancy of neuron networks or pathways, so much so, that inactive neuro pathways are removed in a process termed as pruning. Throughout the life of an individual, the brain uses this pruning process to allow for more efficiency of processing sensory input. Consequently, the neuron networks, which when used more frequently, are enhanced in thickness and performance.

 

A Key For Developing More Brain Connections

Enhancing stronger neuro circuits and creating more connections to improve learning is the goal of brain-based teaching.

When a learner experiences and reviews visual content, neuro networks are enhanced connecting to the posterior lobes region of the brain, which is responsible for processing optical stimulus. Accordingly, when a student hears the corresponding instruction, audio input is channeled using neuro pathways to the brain’s temporal lobes that process auditory signals. This redundancy of information ensures the brain will increase the likelihood of recalled content, due to interconnectivity components of the brain.

Event memories, are classified as recollections, with emotional magnitude associated with them. An occurrence of a dramatic event creates a strong sensory input, that intensely uses neural pathways to store memories in the limbic system. The retention of content in another region of the brain enhances the opportunity of memory recall. An increase in the variety of sensory inputs, means more channels to actively retrieve content from stored memories.        Neural_Network_BPP_ae9766

Most people can easily recall events taking place years in the past, through experiencing  a form of nostalgia. The smell of grass clippings may bring back thoughts of a long-lost summer day — hearing a song can trigger vivid memories through the limbic system’s powerful use of sensory input.

 

Facilitators who use a variety of instructional media to demonstrate the same subject matter, will increase the opportunity for learners to comprehend and retain that content. Again, by engaging a diversity of neural pathways, facilitates connecting to more stimulus processing regions of the brain. Similar to computers, the brain’s increase use of processing resources allows for quicker retrieval and storage of data. Ostia Antica Italy BPP ae0178

 

Developing Learning Activities, Which Build Upon Students’ Existing Experiences, Ensures Greater Success

Any learning activity that actively personalizes a learners’ involvement in the process, will increase memory retention and meaning of the content.Also, a teacher or instructor should utilize surprise or uniqueness in the presentation of content, so as to capture the attention and focus of a student.

CTE instructor, Craig DeVine, working with students enrolled in Mountlake Terrace HS's, STEM Magnet School.

CTE instructor, Craig DeVine, working with students enrolled in Mountlake Terrace HS’s, STEM Magnet School.

In fact, effective teachers and instructors have intuitively used some of these brain-based instructional strategies, well before brain-mapping science was developed. Educators formally assessed the effectiveness of these methods through test results, however today, evidence-base neuroimaging is confirming the scientific reason for the learning success.

Here are some brain-based activities for students to benefit from, by being personally involved with how they input the lesson or content.eLEARN_cloud_11

I’ve had the opportunity to use “concept and mind mapping” as a student learning activity, in the classroom for Career Technical Education courses. This personalized learning activity is effective for note taking and enhancing recall. By assessing test results and interviewing individual students on their comprehension of the content, this activity proved successful in achieving the assignment’s learning objective. This technique may not work for everyone, however, cognitive research has shown the great advantage of activating more regions of the mind to enhance neuron pathways for greater memory recall. Link for creating “word clouds” — http://www.wordle.net

ESD Strat Direct 2014 BPP_1836

 

Trends In ELearning Demand, Correlates With Neuroimaging Evidence Of Brain Based Learning Success

The Research Institute of America, recently published a study indicating eLearning increased information retention rates by 60 percent.  A report produced by IBM, indicated companies using eLearning programs have the potential to increase productivity of up to 50 percent. Essentially, eLearning is a multimedia rich environment, which combines photographs, video, audio, graphics and text to produce an enriched educational experience. Corporate and post-secondary education is fueling a massive growth in eLearning. According to a leading market research firm, Global Industry Analysts forecast a $107 Billion investment, internationally, in eLearning programs by the end of 2015.

Rattlesnake R hike BPP_e11

“The meaning of ‘knowing’ has shifted to being able to remember and repeat information to being able to find and use it.”

(National Research Council, 2007)

ESL Teacher Resource — Practical Ways Brain-Based Research Apples To English As A Second Language (ESL) Learners

http://iteslj.org/Articles/Lombardi-BrainResearch.html

Links & Resources For Brain-Based Learning

http://www.whitehouse.gov/share/brain-initiative

http://www.livescience.com/41413-momentum-builds-for-obama-s-brain-initiative.html 

http://www.ascd.org/publications/books/107006/chapters/Memory,_Learning,_and_Test-Taking_Success.aspx

http://www.brainbasedlearning.net/guiding-principles-for-brain-based-education/

http://www.edutopia.org/article/brain-based-learning-resource-roundup

http://www.funderstanding.com/theory/brain-based-learning/brain-based-learning/

http://www.sedl.org/scimath/compass/v03n02/brain.html#8

http://edglossary.org/brain-based-learning/

Links & Resources Brain-Based Best Practices

http://www.teyl.org/article13.html

http://files.eric.ed.gov/fulltext/ED510039.pdf

http://www.seenmagazine.us/articles/article-detail/articleid/47/21-sup-st-sup-century-focus-brain-based-learning.aspx

Links & Resources Forecasting Growth of Multimedia eLearning

http://www.forbes.com/sites/tjmccue/2014/08/27/online-learning-industry-poised-for-107-billion-in-2015/

http://elearningindustry.com/top-10-e-learning-statistics-for-2014-you-need-to-know

http://www.ambientinsight.com/reports/elearning.aspx

Reviews Of Cognative Or Brain Based Learning Sites

http://www.businessinsider.com/do-lumosity-and-other-brain-training-games-work-2014-1

http://www.businessinsider.com/lumosity-review-2014-2#theres-some-evidence-that-it-can-produce-short-term-specific-training-effects-that-do-not-generalize–a-small-if-fleeting-boost-to-your-working-memory-capacity-for-example-but-this-can-hardly-be-confused-with-achieving-your-full-potential-8

Links To Cognative Or Brain-Based Learning Sites – Often These Sites Offer Free Trials

http://www.lumosity.com

http://www.rebilderu.com 

—————————–

[contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

Big Picture One – Directory Of Multimedia eLearning Posts

Multimedia essays & eLearning programs by: David Anthony Johanson  © All Rights 

To quickly view sites of interest, just click on the white text to the right of the feature photo & above the program’s description. You also have the option to navigate to each essay by simply scrolling down past the end of this directory.

Essays are listed in chronological order from when they were first published.

You’ll find in each program essay, a spectrum of resources to help better understand & appreciate the subject matter. To enhance your experience, a variety of carefully considered dynamic content is used, including: photographs, videos, graphics, text & hyperlinks to other sites. Every effort is made to assure the information presented is factually correct by cross referencing content & giving proper credit for creative work used in the stories & essays.

You’re invited & encouraged to comment on the programs presented here, by doing so, you enrich the site by making it a more interactive experience. All constructive comments are welcome, even if you’re not in total agreement with the article’s point of view.

The author of these sites is a multimedia photographer, CTE instructor and a former Boeing scientific photographer.

For an alternative graphic format of these programs, please visit — www.ScienceTechTablet.wordpress.com 

————————————————————————–

Rattlesnake R hike BPP_e11

https://bigpictureone.wordpress.com/2014/12/31/new-brain-based-learning-strategies-explored-using-neuroimaging/  New Brain-Based Learning Strategies Explored To Help Achieve Your Full Potential. Finding and sharing new learning strategies, that are inspired from evidence based, neuroimaging and brain-mapping studies, is a dynamic process to help assist individuals in reaching their full learning potential. Brain-based learning is a spectrum of teaching strategies, which uses neuroscience research on how the brain functions in achieving ideal development and potential. Learning concepts used: Applied Learning, Adult Learning, Competency-based Learning, Critical Thinking, Integrative Learning. Key: Words or phrases italicized are used to focus on essential concepts or terms for enhanced learning and retention.

—————————————————————————

Antares_launch_graphic_ae2

https://bigpictureone.wordpress.com/tag/gone-in-30-seconds-elearning-program-on-rocket-launch-disaster/  Gone In 30 seconds… It’s estimated that an average of 8 percent of all commercial rocket launches end in failure. This eLearning program includes a compendium of 20th & 21st century rocket launches, including dramatic failures. A succinct introduction to space law is included for greater appreciation of the consequences and liabilities related to the growing number of commercial rocket launches. A detailed world map illustrates the major spaceports & launch centers using GPS coordinates and web address. 

An eLearning program for secondary/post secondary education and community learning content covered: — aerospace/astronautic engineering, avionics, economics & business, environmental footprint, financing, manufacturing, marketing, obsolescence management, technology& Space Law. Learning concepts used: Applied Learning, Adult Learning, Competency-based Learning, Critical Thinking, Integrative Learning. Key: Words or phrases italicized are used to focus on essential concepts or terms for enhanced learning and retention.

——————————————————————————

Boeing_Paine_Field_BPP_Ae3083

https://bigpictureone.wordpress.com/tag/david-a-johanson-historian/  Will The Next Jet Airliner You Fly Be Obsolete, And Ready for Early Retirement?  This multimedia essay examines the evolving financing strategies and technological developments affecting older generation commercial aircraft. An eLearning program for secondary/post secondary education and community learning. Assessment tool: A quiz and answer key is located at the end of the program. Learning content covered: aerospace/airliner— aerospace engineering, avionics, economics & business, environmental footprint, financing, manufacturing, marketing, obsolescence management, technology. Learning concepts used: Applied Learning, Adult Learning, Competency-based Learning, Critical Thinking, Integrative Learning. Key: Words or phrases italicized are used to focus on essential concepts or terms for enhanced learning and retention.

[ Disclaimer: David Johanson is a former Boeing scientific photographer and currently has no stock holdings or a financial interest in: Boeing, Airbus or any other companies referenced in this program. Research in this article has been cross referenced using at least three sources, however, all perspectives and opinions represent only the viewpoints of the author.]

——————————————————————————

Arctic_Tundra_Oil_Field_e1003

https://bigpictureone.wordpress.com/2014/04/22/the-environment-our-earths-lost-frontier/ The Environment, Our Earth’s Lost Frontier. A photo essay dedicated to the environment using photos from editorial and industrial photo assignments. From Alaska’s oil rich Arctic region to the tropical rain forest of Hawaii, environmental encounters and stories are visually shared. eLearning – suitable for secondary/postsecondary education, community & extended learning. Photo-illustration, graphics, text and links on Earthday and the environment included within this program. 

——————————————————————————

Mars_MP_BPP_ae214

https://bigpictureone.wordpress.com/2014/03/04/the-martian-prophecies-earths-conquest-of-the-red-planet/  The Martian Prophecies. In this futurist multimedia photo essay, a correspondent from 2054 presents a series of Astronautical engineering and Astrobiology developments enabling the remarkable colonization of Mars. ELearning – suitable for secondary/postsecondary education, community & extended learning. Extensive photo-illustration, graphics, text and links on Mars colonization included within this program.

——————————————————————————-

Steam_punk_Fairhaven_BPP_2013_w 1

https://bigpictureone.wordpress.com/2013/09/11/an-introductionary-guide-to-steampunk/ A Beginners Guide to Steampunk. — Photo essay introduction to Steampunk subculture. As a sub-genre of science fiction its practitioners feature Victorian era clothing along with accessories such as goggles, intricate antique jewelry & a wide spectrum of retro-futuristic attachments. Subjects include critical thinking, alternative lifestyle, 19TH Century Industrial History & Steampunk Etymology.

—————————————————————————

Rome_Archt_BBP_0344

https://bigpictureone.wordpress.com/2013/07/31/how-did-romes-vitruvius-become-the-worlds-first-impact-player-in-architecture/  Multimedia photo essay introduction to Roman architect & engineer Vitruvius, who writes the first book on architecture. Vitruvius’ influence is relevant for modern architecture, STEM, Pre-Engineer & CTE related content. For Secondary & post secondary learning. ELearning, Links relating subject matter, quizzes for learning. Extensive photography of Roman architecture featured from: Rome, Ostia Antica & Herculaneum.

————————————————————————————————-

Pearl_Harb_VC_BPP_e8v474bigpictureone.wordpress.com/tag/photos-of-pearl-harbor-visitor-center/  Low light architectural photography of the new Pearl Harbor Visitor Center on Oahu, Hawaii. Multicultural essay of modern Hawaiian & Pan Pacific Cultures. — multimedia photo essay, eLearning, photo tutorial on marketing & night photography, reference links

————————————————————————————————-

Sky_look_ BPP_ae208Is Space Law Really That Far Over Your Head? | bigpictureone   Space Law introduction, case studies, space port launch sites, space debris, asteroid mining includes history of the modern rocket program. — Multimedia essay, eLearning, STEM & CTE content, quizzes, interactive map, video links, reference links
———————————————————————————————– 
30756_1424678490440_7205732_n

Reflecting on the 33rd Anniversary of Mount Saint Helens Eruption | bigpictureone    Reflections on a close encounter with one of the worlds most active stravovolcanos.  Mt. Saint Helens eruption – photo essay, eLearning, reference links

————————————————————————————————-

What Chance Will America’s Youth Have In A Changing   STEM_EXPFair_ESD_BPP_E23Global Economy? | bigpictureone STEM Education & Magnet Schools – Origins of the program & its success in public education. STEM expo at Mountlake Terrace HS -Edmonds School District.–  Multimedia essay, eLearning, STEM & CTE content, reference links

————————————————————————————————-

Photo-illustration: David Johanson Vasquez © All RightsReflections From A Future Hawaii. Can A Tropical Paradise Become A Portal To Deep Space? | bigpictureone   Futuristic Hawaii in the year 2054 as it’s transformed into a space port & gateway to space. — Multimedia essay, eLearning, links

————————————————————————————————-

Waikiki_Santa_BPP_E22An unusual encounter with a Waikiki Santa Clause | bigpictureone      Photo essay of a Waikiki Santa Clause using an adaptation of Clement Clare Moore’s (1799 -1863) classic poem — Twas the night before Christmas. Multimedia photo essay.  Mele Kalikimaka! — multimedia, poetry, eLearning

————————————————————————————————-

Silhoute_man_ocean_BPP_E227https://bigpictureone.wordpress.com/2012/12/20/will-the-last-people-remaining-in-america-turn-the-lights-back-on/  Multimedia essay on solar flares, solar/geomagnetic storms & solar maximum of 2013-2014. Potential solar storm scenarios, which government scientist & federal agencies are warning about, including loss of world power grids. Resources & links to various publications & sites  included. — multimedia, eLearning on solar storm history & threats to current infrastructure, STEM related content, quizzes, reference links

———————————————————————————————

EPSON scanner imageA Glimpse Into Havana’s Legendary Watering Hole | bigpictureone Family photo taken in 1941 at Havana’s Sloppy Joe’s, inspired this photo essay of events shortly before & after the start of WWII. Family chronicled as they arrive in Panama for reunion with my grandfather, evacuated & survive being stalked by German wolf-pack U-boat submarine. — multimedia essay – eLearning

————————————————————————————————-

R22_Helicopt_DAJ_44The Latest Full Throttle Multimedia Video of Seattle From the R22 Beta Helicopter – Part 2 of 2 | bigpictureone  Helicopter safety & repair video, aerial photography of Seattle & Boeing field, using an R22. — STEM & CTE learning, multimeida, eLearning, quizzes video essay.

————————————————————————————————-

R22_helicopt_DAJ_42A Full Throttle Multimedia Video of Seattle      From the R22 Beta II Helicopter – Part 1 of 2. | bigpictureone  Helicopter safety & repair video, aerial photography for Port of Seattle, from Boeing Field, using an R22, eLearning video essay. STEM & CTE learning, aerospace engineering. — mutlimedia, eLearning, quizzes, resource links

————————————————————————————————

Man_micro_chip_BPP_et169https://bigpictureone.wordpress.com/2012/08/31/who-were-the-titans-of-telecommunication-and-information-technology/ Introduction to R&D research labs through a multimedia history of Bell Laboratory, its developments inventions. Second chapter explores Xerox PARC founding in Silicon Valley &  contributions it made to personal computing & telecommunications. — eLearning, quizzes, reference links

————————————————————————————————-

Star_Showr_Ref_Lk_BPP_e616https://bigpictureone.wordpress.com/2012/08/16/blinded-by-the-light-in-the-middle-of-night/  Photo essay on light pollution’s effects on night photography, astronomy, animal migrations & quality of life. Mount Rainier National Park & long exposure photographs of landscape & star constellations are featured in this essay. — multimedia, eLearning, STEM related content,  quizzes, resource links

————————————————————————————————-

Aurora_Bor_BPP_il_0011_1https://bigpictureone.wordpress.com/2012/07/20/theres-nothing-new-under-the-sun-or-is-there/  Multimedia essay introduction to solar storms (including historical perspective), CME’s, effects of geomagnetic disturbances & potential threats to global electrical power grids. The connection between solar storm activity & aurora Borealis — eLearning, STEM related content, quizzes, resource links

————————————————————————————————–

Orvi_Italy_BPP_E0412https://bigpictureone.wordpress.com/2012/02/21/exploring-etruscan-ruins-beneath-the-cliffs-of-medieval-orvieto-italy/ Multimedia essay on one of Europe’s best kept secrets — the medieval fortress citadel, Orvieto. Explores Etruscan ruins, grottos, medieval architecture, massive cathedrals & nearby Umbria countryside. Examines Etruscan art & its misunderstood cultural traditions under the shadow of the Roman Empire. — Critical thinking, World history & culture, travel, e-Learning, extensive photo gallery, quizzes, resource links

——————————————————————-

Paint_Hills, BPP__42https://bigpictureone.wordpress.com/2012/04/07/1382/ Multimedia essay includes video interview with a National Park Service’s ranger on the unique geology & wildlife qualities of John Day National Monument’s Painted Hills. Video features exclusive walking tour, which occurs only once per year. — night photography, resource links

———————————————————————————————

Boe_ing_787_First_Flt_BPP_Bg404Boeing’s 787 Dreamliner Historic First Flight From Paine Field, Everett, WA. | bigpictureone Historic first flight video of Boeing 787 Dreamliner at Everett facilities by BigPictureOne. Multimedia of Boeing Scientific photography experience related to aircraft structures & test engineering. — ELearning, STEM & CTE Ed, large photo gallery, quizzes, resource links

————————————————————————————————-

SeaSPNed_BP_90_MRhttps://bigpictureone.wordpress.com/2012/04/22/the-world-event-which-launched-seattle-into-a-post-modern-orbit-50-years-ago-today/  Multimedia essay explores an early postmodern World’s fair — known as Seattle’s Century 21 Worlds Fair, opened in 1962, during the Cuban Missile Crisis.  e-Learning, STEM related content, quizzes, extensive photos

———————————————————————————————–

twinT_WTC_NYC BPP_arl_44https://bigpictureone.wordpress.com/2011/09/12/the-day-after-911-ten-years-after/ Multimedia narrative of a 1998 visit to the NYC World Trade Center Towers & the aftermath of the 9/11 terrorist attacks. Seattle architect Minoru Yamasaki’s designs of the NYC Trade Centers are compared with his Seattle Science Center design for the Century 21 Worlds Fair —eLearning, critical thinking, extensive photo gallery, quizzes, resource links

—————————————————————————————–

Snoqu_almie_Falls_BPP_Ae_6174Luminous Beauty of Low-light Photography | bigpictureone Photo essay tutorial on low-light photography. Strategies & techniques of using low noise sensors in digital cameras. Terms such as magic hour & HDR photography are explained. — eLearning, CTE related content, photo gallery

————————————————————————————–

Kingdome Demo_BPP_ 2KIngdome demolition March 26 2000 | bigpictureone Video multimedia essay of one of the World’s largest demolitions of Seattle Kingdome. E-learning, video tutorial (featured slow-motion & high-speed video effects), essay of event & aftermath from dust storm. Reference links included.

————————————————————————————–

Tech_abst_BPP__3ea1Will The Current Solar Storms Hitting Earth, Lead To Lights-out for us by 2013-2014? | bigpictureone A multimedia essay introduction to solar storms, history of geomagnetic effects on industrial & postmodern societies. Civil preparedness, Photos & videos of Aurora Borealis. STEM & solar physics undergraduate content, extensive photos, resource links

———————————————————————————————

[contact-form][contact-field label="Name" type="name" class="GINGER_SOFATWARE_correct">/][contact-field label="Email" type="email" class="GINGER_SOFATWARE_correct">/][contact-field label="Website" class="GINGER_SOFATWARE_correct">/][contact-field label="Comment" type="textarea" class="GINGER_SOFATWARE_correct">/][/contact-form]

Is Space Law Really That Far Over Your Head?

Sky_look_ BPP_ae208
  Multimedia Essay By: David Johanson Vasquez © All Rights  

.

 Part 1 of 2 Editions  – To view an alternative graphic format see: 
Science Tech Tablet | A site dedicated to technology, science and learning.
.

Look upwards toward the sky on the next clear day or cloudless night and behold the new legal frontier unfold before your eyes. A mere 65 miles above sea-level, our atmosphere and gravity dwindles into space, where satellites begin to glide silently over Earth’s thin atmosphere. Only a fraction of human history has passed since man-made satellites were far and few between — but that time has since slipped away, replaced by an ever tightening metal jacket of used and disregarded manufactured, celestial artifacts. Almost at the start of the space race, “Space Law” was launched and it’s had an uphill battle to catchup with the unforeseen consequences of humanity’s reach for the heavens.

The German V-2 rocket was a sophisticated liquid propellant rocket, which first entered outer-space in 1942.
The German V-2 rocket was a sophisticated liquid propellant rocket, which first entered outer-space in 1942.

At times, defining what Space Law is or does is a nebulous task. This new form of law can be so abstract and full of contradictions that it resembles an art, rather than a science. Like creating a massive sculpture, it’s often a process which involves slow progress — developing over time through stages of careful analysis and discernment. Space Law will continue to transform itself by maturing, developing refinements and taking on new dimensions as needed.

There are basically three forms of law, which make up Space Law: 1.) Regulatory Law – sets standards which must be met for securing authority to launch a rocket vehicle.  2.) Tort Law – concerns damages which occur as a result of debris from rocket launch accidents or space and terrestrial impacts from orbital debris. 3.) Common Law – could be applied to circumstances relating to a private entity’s negligence, which causes damage from its orbital debris.

Back To Rocket Science Basics.

The basic blueprint for all modern rockets used in today’s space programs originated from the American physicist, Dr. Robert Goddard, who is considered the father of modern rockets. By the late 1930s, Goddard had tested a liquid propellant rocket — the rocket used vanes or fins near the thrust nozzle to help initial launch guidance and a gyro control for flight over the desert in New Mexico. The German scientist, Wernher von Braun’s V-2 rocket borrowed Goddard’s basic design for refinement and increased its scale for later mass productionUsed by the German military towards the end of World War II, V-2 or Aggreat-4 ( A-4) was successfully launched in 1942, making it the first human made object to enter outer space.

The V-2 was a sophisticated liquid propellant, single stage rocket, which had a top speed of 5,760 km/h (3,580 mph) and could reach an altitude of 206km (128 miles.) At the end of the war, the Americans, British and Russians took possession of all remaining V-2 rockets, along with German engineers, technicians and scientists working on the program. A high priority was placed on researching its capabilities, re-engineering and developing it for national security.

— The Paul Allen Flying Heritage Museum, located at Paine Field, Everett, WA, recently added an authentic V2 rocket for display.

American scientists James Van Allen and Sydney Chapman were able to convince the U.S. Government of the scientific value for launching rockets carrying satellites into space. A scientific effort in the early 1950s was begun, with the plan to launch American satellites by 1957 or 1958. The Russians surprised the World by launching the first satellite into orbit in 1957 named Sputnik.

First photograph from space & of the Earth, from a V-2 rocket in 1946 byU.S scientist.
First photograph from space & of the Earth in 1946, from a V-2 rocket at an altitude of 65 miles, by U.S. scientist. Photo: courtesy of U.S. Army
A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.
A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & the Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida. Photo: courtesy of NASA/U.S. Army
Most major space portals or rocket launch site are located next to oceans or remote location to limit legal liability in case of failed launch. It's estimated 10 % of rocket launches end in failure. Photo illustration: David Johanson Vasquez ©
Most major space portals and rocket launch sites are located next to oceans or remote locations to limit legal liability in case of a failed launch. It’s estimated 8 % of rocket launches end in failure. Photo illustration: David Johanson Vasquez ©
What Goes Up Must Come Down.

Rocket launch programs have always had to contend with Newton’s law of gravity, today, these programs face new challenges with liability laws, to protect individuals and property from unexpected accidents.

Case Study:  The first time a major issue of liability occurred was in 1962, on a street within Manitowoc, Wisconsin. Apparently, a three-kilogram metal artifact from the Russian’s 1960, Sputnik 4 satellite launch, reentered the atmosphere unannounced, over an unsuspecting Midwest. The Russian’s denied it was theirs, fearing liability under international law. This event, helped set in motion, the 1963 Declaration on Legal Principals Governing the Activities of State in the Exploration and Use of Outer Space. As an international agreement, it puts forth the responsibility to the State which launches or engages the launching of objects into space as internationally responsible for damages caused on Earth. In 1967, the agreement was slightly modified and was titled “Outer Space Treaty 1967.” 

A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law sets the liability for damages caused by the space debris to the nation or agency responsible responsible to its original rocket launch.
A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law sets the liability for damages caused by the space debris to the nation or agency responsible for its original rocket launch.

By 1984, the United Nations General Assembly, had adopted five sets of legal principles governing international law and cooperation in space activities. The principles include the following agreements and conventions.“Outer Space Treaty” – the use of Outer Space, including the Moon and other Celestial Bodies (1967 – resolution 2222.) “Rescue Agreement” – the  agreement to rescue Astronauts/Cosmonauts, the Return of Astronauts/Cosmonauts and the Return of Objects Launched into Space (1968 – resolution 2345.) “Liability Convention” – the Convention on International Liability for Damaged Caused by Space Objects (1972 – resolution 2777.) “Registration Convention” – the registration of  Objects Launched into Outer Space (1975 – resolution 3235.) “Moon Agreement” – the agreement Governing the Activities of  States on the Moon and Other Celestial Bodies (1979 – resolution 34/68.)

Because so many languages are involved with these international agreements, terms used in Space Law, often gets lost in translation. There are linguistic limitations and general lack of necessary definitions to adequately cover specific space concepts and activities using Space Law. Each Nation has its own agenda and vision concerning the development of space — then throw in multinational companies and things get really diluted when it comes to working out agreements regarding laws governing space.

Although most large "space junk" is monitored and efforts are made for reentry over uninhabited areas, satellites or sections of rockets can potentially fall anywhere.
Although most large “space debris” is monitored and great efforts are made for reentry to take place over uninhabited areas – satellites or sections of rockets can potentially fall anywhere.
Cuba Gives A New Meaning To A Cash Cow.

Case Study:  In November of 1960, the second stage of a U.S. A Thor rocket fell back to Earth and killed a cow grazing in Eastern Cuba. The final settlement required the U.S. Government to pay Cuba $2 million dollars in compensation — creating the world’s first “Cuban Cash Cow.”

Dramatic Rocket Launch Failures Associated With Space Exploration.

It’s estimated since the 1950s, of the nearly 8,000 rockets launched for space related missions, 8 % of rocket launches ended in failure (2012 spacelaunchreport.com.) The resulting anomalies have cost the lives of hundreds of astronauts, cosmonauts and civilians along with billions of dollars in losses. Here’s an abbreviated list of dramatic and tragic events associated with rocket launch failures. WA Okang SatDshBP_e1103

Vanguard TV3, December 9, 1957 launched from Cape Canaveral, Florida (U.S.) was the first U.S. attempt at sending a satellite into orbit.  A first event of its kind to use a live televised broadcast, which ended by witnessing Vanguard’s explosive failure. Unfortunately this launch was a rushed reaction to the Soviet Union’s surprise success of launching the world’s first satellite, Sputnik, on October 23, 1957.

Vostok rocket, March 18, 1980, launched from Plesetsk, Russia (the world’s busiest spaceport). While being refueled the rocket exploded on the launch pad, killing 50, mostly young soldiers. (Source: New York Times article, published September 28, 1989)

Challenger STS-51-L Space Shuttle disaster, January 28, 1986, launched from Kennedy Space Center (U.S.) marked the first U.S. in-flight fatalities. After only 73 seconds from lift-off, faulty O-ring seals failed, releasing hot gases from the solid propellant rocket booster (SRB), which led to a catastrophic failure. Seven crew members were lost, including Christy McAullife,  selected by NASA’s Teacher in Space Program. McAullife was the first civilian to be trained as an astronaut — she would have been the first civilian to enter space, but tragically, the flight ended a short distance before reaching the edge of space. Recovery efforts for Challenger were the most expensive of any rocket launch disaster to date.

Long Mark 3B rocket launch, payload: American communication satellite, built by Space Systems Loral – February 14, 1996 in Xichang (China) – two seconds into launch, rocket pitched over just after clearing the launch tower and accelerated  horizontally a few hundred feet off the ground, before hitting a hill 22 seconds into its flight. The rocket slammed into a hillside exploding in a fireball above a nearby town, it’s estimated at least 100 people died in the resulting aftermath. Click on this link to read the complete eyewitness story. →    Disaster at Xichang | History of Flight | Air & Space Magazine

Delta 2, rocket launch – January 1997, Cape Canaveral (U.S.) – this rocket carried a new GPS satellite and ends in a spectacular explosion. Video link included to show examples of  worst case scenario of a rocket exploding only seconds after launch (note brightly burning rocket propellant cascading to the ground is known as “firebrand”.)  The short video has an interview with Chester Whitehair, former VP of Space Launch Operations Aerospace Corporation, who describes how the burning debris and toxic hydrochloric gas cloud fell into the Atlantic Ocean from the rocket explosion. Rocket launch sites and Spaceports are geographically chosen to mitigate rocket launch accidents . Click on this video link to see the rocket mishap. →    US rocket disasters – YouTube

Titan 4, rocket launch – August 1998, Cape Canaveral (U.S.) the last launch of a Titan rocket – with a military, top-secret satellite payload, was the most expensive rocket disaster to date – estimated loss of $ 1.3 Billion dollars.

VLS-3 rocket, launch  – August 2003, Alcantara (Brazil) – rocket exploded on the launch pad when the rocket booster was accidentally initiated during test 72 hours before its scheduled launch. Reports of at least 21 people were killed at the site.

World_spaceport-InterAf_Map

Global location, GPS coordinates & rocket debris fields of major Spaceports & launch sites. ( Click on map to enlarge)
Quiz ??? – Do you see any similarities in the geographic locations used for these launch sites? What advantages do these locations have regarding “Space Law?” For most rocket launches, which site has the greatest geographic advantage & why; which has the least advantage & why?
Location, Location, Location Benefits Rocket Launch Sites.

If you zoom into the above World map with its rocket launch sites, you’ll notice all the locations gravitate toward remote regions. Another feature most Spaceports share is large bodies of water located to the east, with the exception of the U.S. Vandenberg site. Less likely hood of people or property being harmed by a rocket which could experience a catastrophic failure is why oceans make a great safety barrier.  The legal liability for a launch vehicle is why all ships and aircraft are restricted from being anywhere near a rocket’s flight path. The rocket debris fields are marked with red highlights, this fallen debris is a highly toxic form of unspent fuel and oxidizers.

Most rockets are launched towards an easterly direction due to the Earth’s eastern rotation, which aids the rocket with extra momentum. An exception for an east directional launch is Vandenberg site in California, which launches most of its rockets south for polar orbits used by communication and mapping satellites.

Launching rockets closer to the equator gives a launch vehicle one more advantage — extra velocity gained from the Earth’s rotation near its equator. At the equator, our planet spins at a speed of 1675 kph (1040 mph,) compared to a spot near the Arctic Circle, which moves at a slower, 736 kph (457 mph.) Even the smallest advantage gained in velocity means a rocket requires less fuel to reach “escape velocity.” This fuel savings translates to a lighter launch vehicle, making the critical transition of leaving Earth’s gravitational field quicker.

The next edition of the Space Law series includes:
Potential Minefield Effects From Space Debris And The Regulatory Laws To Help Clean It Up.
Will Asteroid Mining Become The Next Big Gold Rush And What Laws Will Keep The Frontier Order?
Links And Resources For Space Law.

.

International space law is emerging from its infancy, attempting to more clearly define itself from a nebulous amalgam of; agreements, amendments, codes, rules, regulations, jurisdictions, treaties and non-binding measures. There exists today, enough legal framework for commercial interest to move cautiously towards developing outer space. However, with the unforeseen variables & dynamics of space activities, exceptions will be made and rules will be stretched, if not broken to accommodate necessity, justification or exculpation. ~

Surprise space mission featured videos: Click → Boards of Canada – Dawn Chorus – YouTube   

→     Boards of Canada – Music is Math (HD)

→     Boards of Canada – Gemini – Fan Video on Vimeo
WA Okang SatDshBP_e1103
Links And Resources For Space Law.

The Space Review: International space law and commercial space activities: the rules do apply

Outlook on Space Law Over the Next 30 Years: Essays Published for the 30th … – Google Books

“SPACE FOR DISPUTE SETTLEMENT MECHANISMS – DISPUTE RESOLUTION MECHANISM” by Frans G. von der Dunk

Asteroid mining: US company looks to space for precious metal | Science | The Guardian

Planetary Resources – The Asteroid Mining Company – News

5 of the Worst Space Launch Failures | Wired Science | Wired.com

Orbital Debris: A Technical Assessment

NASA Orbital Debris FAQs

‎orbitaldebris.jsc.nasa.gov/library/IAR_95_Document.pdf

A Minefield in Earth Orbit: How Space Debris Is Spinning Out of Control [Interactive]: Scientific American

SpaceX signs lease agreement at spaceport to test reusable rocket – latimes.com

Earth’s rotation – Wikipedia, the free encyclopedia

The Space Review: Spacecraft stats and insights

Space Launch Report

V-2 rocket – Wikipedia, the free encyclopedia

Billionaire Paul Allen gets V-2 rocket for aviation museum near Seattle – Science

Germany conducts first successful V-2 rocket test — History.com This Day in History — 10/3/1942

Part 1 of 2 editions – please check back soon for the conclusion of this essay. 
Photo illustration by: David Johanson Vasquez, using a NASA photo of Skylab.

Photo illustration of space debris by: David Johanson Vasquez, using a NASA photo of Skylab.

http://www.youtube.com/watch?v=nG9LUSf_qK8 

 WA Okang SatDshBP_e1103

What Chance Will America’s Youth Have In A Changing Global Economy?

 

 The first STEM EXPO Fair held at Edmonds School District's new STEM Magnet School at MountLake Terrace HS in Washington State. The student is caring a rocket, which was used in a group presentation at the fair.
The first STEM EXPO Fair held at Edmonds School District’s new STEM Magnet School at MountLake Terrace HS in Washington State. A rocket club student holds a rocket, which was used earlier in a group presentation at the fair.
.

.

Multimedia eLearning program by: David Anthony Johanson © All Rights

The author is a multimedia specialist, CTE instructor and a former Boeing scientific photographer. For an alternative graphic view of this program, please visit: https://sciencetechtablet.wordpress.com/tag/e-learning/

A big question asked by concerned people and industry leaders across the Nation is waiting for an answer… How will current and future generations stay competitive in an increasingly, complex, global economy? A high-performance education program involving a blend of Science, Technology, Engineering and Mathematics (STEM) — is promising solutions as its building momentum within post-secondary and kindergarten-through-grade 12 (K-12) education

STEM Robotics team project is demonstrated for an enthusiastic audience of all ages.
The STEM Robotics team project is demonstrated to an enthusiastic audience of all ages.

The dynamic learning created from STEM’s project based curriculum is contagious for a growing number of students. And the program’s appeal is spreading to parents, public schools and corporate sponsors who are looking for ways to get involved in supporting technology learning through secondary education. Even the U.S. Congress solidly supports the critical initiatives driving STEM Education, which is primarily funded through the National Science Foundation (NSF.)

STEM Robotics team in action with their project
Enthusiasm and excitement were experienced by those viewing students’ technology project presentations.

A Basic Overview Of A STEM Magnet Program

.

By the 21st century, digital technology had transformed global manufacturing and commerce by accelerating STEM related industries. The skill-sets, training and knowledge of entry-level applicants was noticeably falling behind. Standards for learning, used in our public educational system, were now becoming outdated. Nationally, educators needed a new, comprehensive learning approach to inspire, explore and motivate students’ achievement in the global dynamics of STEM.

Today, the Nation’s public schools place greater emphasis on introducing STEM related content to both teachers and students, starting as early as grade school. This program strategy allows all students of varied backgrounds, ethnicities and socioeconomic levels, gain access to learning projects associated with science and technology. By presenting young students with thoughtful STEM lesson plans, they are more likely to engage in the discovery process of even the most technical subject matters. Entering middle school, students are learning accelerated levels of science and technology content, which helps them decide if they wish to enroll in a high school, offering a focused curriculum. The STEM Magnet Program pulls in a diversified population of students, engaged and motivated by their earliest learning experiences.STEM_Fair_ESD_BPP_aq_68

 Evolution And Development Of STEM Education

.

Richard Blais, Chairman of the technology department for the Shenendehowa Central School District in Upstate New York, developed a curriculum in 1986, to support students’ interest in studying engineering. To enable enthusiasm and confidence in students, core courses included; pre-engineering and digital electronics, infused with energetic and interactive learning environments. The curriculum’s proven a success, attracted philanthropist, Richard Liebich, who partnered with Blais to set up, Project Lead the Way (PLTW.) 

Greg Schwab - Principal, Mountlake Terrace High School, greets students at the STEM EXPO Fair
Greg Schwab – Principal, Mountlake Terrace High School, greets students at the STEM EXPO Fair
Dr. Nick Brossoit Superintendent, Edmonds School District
Dr. Nick Brossoit Superintendent, Edmonds School District

Within 10 years of PLTW’s founding, a dozen high schools in New York State adopted the program. Within the next few years high schools in 30 states were using PLTW’s “Pathway to Engineering Program.” Soon after, PLTW was a major national program, which used innovative activities of project and problem-based assignments. Further adding to PLTW’s momentum and success was the enthusiastic support corporations showed by endorsing and contributing financial resources towards the program.  

Mark Madison  Director, Career & Technical Education
Mark Madison
Director, Career & Technical Education for Edmonds SD

STEM Education incorporated many successful PLTW learning strategies and programs. PLTW is still active in high schools today and plays an active role in STEM Education.

STEM EXPO Keynote Speaker - Dr. Elaine Scott Director of Science & Technology Program UW Bothell
STEM EXPO Keynote Speaker – Dr. Elaine Scott, Director of Science & Technology Program, UW Bothell 

Mark Sanders’, 2009 STEMmania article in The Technology Teacher, cites the STEM acronym first being used in the 1990’s. The National Science Foundation (NSF) started using “SMET” as a reference for “science, mathematics, engineering and technology.” A department, program officer complained “SMET” sounded similar to “smut,” so “STEM” became the suitable replacement. It would take more than a decade for the public to recognize STEM’s referenced meaning.

The support  and enthusiasm for STEM Education is displayed by an impressive turnout for the District's first STEM EXPO Fair.
The support and enthusiasm for STEM Education is displayed by an impressive turnout for the District’s first STEM EXPO Fair.

STEM_Fair_ESD_BPP_77_1  STEM_Fair_ESD_BPP_74STEM_Multi_Tshirt_-E101

The Challenge Of Integrative Education: Transcending Barriers And Perceived Domains Found Within Science, Technology, Engineering and Mathematic Education

.

Perhaps the greatest test for a STEM Magnet Program will involve achieving the goal, of course/subject integration. As a career, technical and education (CTE) instructor, I’ve heard this complaint more than any other from students — “why do I have to learn this subject, it doesn’t relate to other things I’m learning or anything I’ll ever need to know!?” In truth, all subjects and courses taught in school share dynamic connections, we as educators need to do more in helping students see their associations.    STEM_Fair_ESD_BPP_ae_24Core sciences and engineering education programs have traditionally maintained strict disciplinary lines, known as silos. This shortsighted disconnect is generally not found in highly competitive industries, where the imperative is to find solutions which will “payoff” in the shortest amount of time. Industry’s necessity to cut through the process, for realizing greater profits is an important lesson plan for all STEM Programs. The realized profit for a student is — being taught how to quickly adapt new, comprehensive and sometimes-unconventional learning strategies to gain a competitive advantage.  STEM_Fair_ESD_BPP_ae_18

STEM Expo Robotics team takes a break from their demonstration for a group photo. Teamwork builds confidence and trust in the students themselves as well as other team members.
The STEM Expo Robotics team takes a break from their demonstration for a group photo. Teamwork builds confidence and trust in the students themselves, as well as other team members.

Benefits/Advantages For Both Students And The Schools They Attend

.

Developing a STEM magnet program helps a school district align its resources towards assisting students preparing for college and universities, which specialize in related technical studies. An additional advantage the program offers a student pursuing a post secondary education is — an institution will most likely accept the applicant’s enrollment request based on the knowledge and technical skills achieved through a STEM Magnet Program.

STEM_Fair_ESD_BPP_87   STEM_Fair_ESD_BPP_ac_23  U.S. industries have increasingly cited the lack of qualified technical applicants they need as a reason not to hire more employees. The shortage of people with necessary STEM skills has motivated corporations to contribute their resources of funding, mentoring and sponsorship towards public education’s technology learning programs.

STEM_Fair_ESD_BPP_ah_6

Community exhibitors at the STEM EXPO Fair include corporate sponsors of STEM education.
Community exhibitors at the STEM EXPO Fair include corporate sponsors of STEM education.

STEM_Fair_ESD_BPP_ac_35

Aerospace giant Boeing is a big sponsor of the STEM Magnet Program.
Aerospace giant Boeing is a big sponsor of the STEM Magnet Program.

STEM_Fair_ESD_BPP_104

STEM_Fair_ESD_BPP_1

Parents and community groups have eagerly supported STEM programs. Student’s parents are critical stakeholders who quickly realized the impact the program was having  — seeing impressive scholastic and attitude improvements with their children.

STEM_Fair_ESD_BPP_ae_17

STEM_Fair_ESD_BPP_ac_1

STEM Education Uses Progressive Learning Strategies To Develop Critical Learning And Self-Discipline Within a Student 

.

STEM_Fair_ESD_BPP_ad_7

As STEM Education attempts to accelerate student development by modifying the standard teacher-centered classroom with more independent learning. The curriculum encourages project-based learning, problem solving and discovery, which empower the students to engage their cognitive skills to find solutions. This form of learning develops greater self-confidence in students and it opens channels among the students themselves to interact thru peer-to-peer learning. These spontaneous collaborative activities are self-organized learning events and they naturally promote leadership within the group. It has been well documented, knowledge transferred from experience in peer-to-peer activities are highly successful forms of learning.

Students enrolled in STEM Programs are encouraged to engage and connect with others by refining their presentation skills.
Students enrolled in STEM Programs are encouraged to engage and connect with others by refining their presentation skills.
STEM_Fair_ESD_BPP_ab_15

STEM_Fair_ESD_BPP_am_39  STEM_Fair_ESD_BPP_ac_20

Tangible Returns In Personal Development Through Teamwork And Leadership

.

Over the past five years I’ve had the opportunity to teach in a variety of classroom environments using a CTE curriculum. It’s remarkable seeing how engaged students are with learning their STEM subject matter. These same students are much more likely to openly contribute and share their ideas in a classroom discussion using the critical thinking skills they’ve learned to develop.

Most often, the STEM classes are more like being in a college environment, requiring a minimum amount of classroom management, as the students are self-motivated to complete their assignments and move on to the next project. Generally, the level of leadership development and volunteerism is noticeably higher in STEM classes due to the program’s emphasis on teamwork, self-confidence and academic achievement. These personal development qualities are valuable assets for students when applying for college admission and later — when entering the career of their choice.

Craig DeVine - pre-engineering instructor, talks with his students near a 3-D printer
Craig DeVine – pre-engineering instructor, talks with his students near a 3-D printer

STEM_Fair_ESD_BPP_a3

STEM_Fair_ESD_BPP_ad_15

.

Improving Forecast For Employment Opportunities Using STEM Education

.

As STEM Magnet Schools continue to place their graduates into secondary education, followed by the students’ successful careers in STEM related industries — STEM Education will help transform the American education landscape. If STEM Education can sustain its momentum, the future horizon looks bright for our youth to achieve economic opportunities on a global leveled playing field.

STEM_Fair_ESD_BPP_91STEM_Fair_ESD_BPP_1STEM_Fair_ESD_BPP_ae_12_1

Entrance to Mountlake Terrace High School -Edmonds School District's first STEM Magnet School
Entrance to Mountlake Terrace High School -Edmonds School District’s first STEM Magnet School

STEM_Fair_ESD_BPP_ad_18

STEM Education Terms & Definitions

CTE = Career Technical Education NSF = National Science Foundation PD&I = pedagogy referring to – purposeful design and inquiry PLTW = Project Lead The Way STEM = Science, Technology, Engineering & Mathematics  STEM Magnet School = A school with a concentration of STEM classes, which attracts students throughout a school district interested in enrolling in a STEM Program

STEM_Fair_ESD_BPP_ae_5

STEM Education Links

http://www.stemedcoalition.org/ Home The Future of Education / The history of STEM education in America. Handy infographic! What is STEM Education? PLTW | OUR HISTORY PLTW | STEM Education Curriculum for Middle and High Schools http://esdstem.pbworks.com/f/TTT%2BSTEM%2BArticle_1.pdf Home PBS Teachers | STEM Education Resource Center nsf.gov – National Science Foundation – US National Science Foundation (NSF) Siemens STEM Academy – STEM Education Has Arrived… Start Small, But Dream Big http://www.stemeducation.com/ STEM Resources | Early STEM Program Still Going Strong – STEM Education (usnews.com) What STEM Is–and Why We Care – STEM Education (usnews.com) 

https://education.uky.edu/STEM/sites/education.uky.edu.STEM/files/SEM%20604_syllabus_%20History%20of%20STEM%20Ed.pdf Historical Perspectives on STEM Education in Arkansas | Arkansas STEM Coalition http://www.fas.org/sgp/crs/misc/R42642.pdf STEM ES Home – STEM ES FAQs NSTA :: News Story 

Who Were the Titans of Telecommunication and Information Technology?

.

Multimedia Essay By: David Johanson Vasquez © All Rights – Second Addition – Series: 1 & 2 

. — Inventions are rarely the result of one individual’s work, but are created from collective efforts over time, from several individual’s observations, theories and experiments. Benjamin Franklin’s role in demystifying electricity, Michael Faraday’s discovery of “induced” current, Nikola Tesla and Guglielmo Marconi’s wireless radio communication… are just a few of the technology pioneers responsible for developing modern telecommunications. I regret not having the resources  for this program’s inclusion of all men and women, whose discoveries made telecommunication  and information technology possible.

Definition of technology — “the systematic application of scientific or other organized knowledge to practical tasks.”  (J.K Galbraith)  “the application of scientific and other organized knowledge to practical tasks by… ordered systems that involve people and machines.” (John Naughton) For an alternative graphic format on this essay:  www.ScienceTechTablet.wordpress.com                                                                                                                                                                                                                 Telecommunications took its first infant steps as the industrial revolution was rapidly compressing concepts of time and space. The first half of the 19THThe century witnessed modern society’s reliance on new innovations — steam locomotive trains for mass transit and electronic communication through telegraph technology. Steamships shrunk the world by delivering capital goods, raw resources and people to remote locations within fractions of the time it took before. With the industrial revolution nearing its peak at the close of the century, a new communication, innovation was developed, which helped transform the modern age into a postmodern era.

Inventor, Alexander Graham Bell’s Washington D.C. company, which developed the telephone, eventually evolved into a prime research laboratory. Bell’s vision for a R & D lab, created a foundation for the digital technologies of today. In the following century, another key, R & D technology titan— Xerox PARC enters the stage, which helps to set in motion personal computing and expands the information technology revolution.

The steamship S.S. Empress of India near Vancouver B.C.
From the private collection of: David A. Johanson ©

.  Scottish born Alexander Graham Bell From the collection of: Library of Congress

The French Technology Connection

A French, visionary government in 1880, recognized the importance of  Alexander Bell’s invention, and awarded him the Volta Prize. A sum of 50,000 francs or roughly, $ 250,000 in today’s currency came with the honor. The funds were reinvested into Bell’s laboratory for use in analysis, recording and transmission of sound. Growing proceeds from the lab were used for additional research and in education to enable knowledge on deafness.  

Can You Hear Me Now                                         

 The telegraph and telephone were the first forms of electrical, point-to-point telecommunications and qualify as early versions of social-media platforms. Over time, phone service, convenience and quality have steadily improved. In my youth during the early 1960s, I spent summers visiting relatives with farms in Wisconsin who had phones connected on “party lines” (several phone subscribers on one circuit).  When picking up a phone connected with a party line, your neighbor might be having a conversation in progress. If  a conversation was taking place you could politely interrupt and request to use the phone for urgent business. Today,  phone service has become so advanced that it is taken for granted as a form of personal utility.   In 1925, Bell Telephone Laboratories were created from a merger with the engineering department of American Telephone & Telegraph (AT&T) and Western Electric Research Laboratories.  Ownership of the lab was shared evenly between the two companies; in return, Bell Laboratories provided design and technical support for Western Electric’s telephone infrastructure used by the Bell System. Bell Labs completed the symbiotic relationship for the phone companies by writing and maintaining a full-spectrum of technical manuals known as Bell System Practices (BSP).     

An Invisible Bridge From Point A To Point B

Bell Laboratories instantly began developing and demonstrating for the first time, telecommunication technology, which we now depend on for economic growth and to hold our social fabric together. Bell accomplished the first transmitting of a long-distance, 128-line television images from New York to Washington, D.C. in 1927. This remarkable event ushered in television broadcast, creating a new form of mass-multimedia. Now people could gather together in the comfort of their homes and witness… live news reports, hours of entertainment and product advertisements, which helped to stimulate consumer spending in a growing economy.            Radio astronomy’s powerful space exploratory telescope, was developed through research conducted by Karl Jansky in 1931. During this decade, Bell lab’s George Paget Thomson was awarded the Nobel Prize in physics for his discovery of electron diffraction, which was a key factor for solid-state.

The Forecasting Power of Numerical Data

An important component of renewable energy is the photovoltaic cell, which was developed in the lab during the 1940s by Russell Ohl. A majority of the United States’  statistician superstars, such as W. Edwards Deming, Harold F. Dodge, George Edwards, Paul Olmstead and Mary N.Torrey all came from Bell Labs Quality Assurance Department. W. Edwards Deming’s genius would later go on to help revitalize Japan’s industry and be used in Ford Motors’ successful, quality control initiatives in the 1980s.

W. Edwards Deming

The U.S. government used Bell Labs for a series of consulting projects relating to highly technical initiatives and for the Apollo program. Several Nobel Prizes have been awarded to researchers at the laboratory, adding to its fame and growing prestige. In the 1940s many of the Bell Labs were moved from New York City to nearby areas of New Jersey. …………………………………. Replica of the first transistor.

Smaller Is Better In The World Of Electronics

Inventors of the transistor, l. to r. Dr. William Shockley, Dr. John Bardeen, Dr. Walter Brattain, ca. 1956 Courtesy Bell Laboratories Perhaps Bell Laboratories most marvelous invention was the transistor invented on December 16, 1947Transistors are at the heart of just about all electrical devices you’ll use today. These crucial artifacts transformed the electronics industry, by miniaturizing multiple electronic components used in an ever-expanding array of products and technical applications. Transistor efficiencies also greatly reduced the amount of heat in electronic devices, while improving overall reliability and efficiency compared to fragile vacuum tube components. Once more, the lab’s select team of scientist was rewarded with the Nobel Prize in Physics, for essential components of telecommunications. 

The mobile-phone was also created in 1947, with the lab’s commercial launch of Mobile Telephone Service (MTS) for use in automobiles. Some 20 years later, cell phone technology was developed at Bell Labs and went on to become the ubiquitous form of communication it is today. In 1954 the lab began to harness the sun’s potential, by creating the world’s first modern solar cell. The laser (Light Amplification by Stimulated Emission of Radiation) was dated in a Bell Lab, 1958 publication.  The laser’s growing spectrum of applications includes — communications, medical and consumer electronics.

A Perpetual Revolution In The Sky Unites The World

In 1962, Bell Labs pioneered satellite communications with the launch of Telstar 1, the first orbiting communication satellite. Telstar enabled virtually instant telephone calls to be bounced from coast to coast and throughout the world. This development unified global communications and provided instant 24-hour news coverage.      

 Bell Labs introduced the replacement of rotary dialing with touch-tone in 1963, this improvement vastly expanded telephone services with— 911 emergency response, voice mail and call service capabilities.

Image used in Byte Magazine for an article on VM2 assembly language. Photo-illustration by: David A. Johanson © All Rights

 

A New Distinct Language For Harnessing Machines

It’s been greatly underreported that Unix operating system, C and C++ programing languages,  essential for use in Information Technology (IT), were all created in Bell Labs. These crucial computer developments were established between 1969 and 1972, while C++ came later in the early 1980s. C programing was a breakthrough as a streamlined and flexible form of computer coding, making it one of the most widely used in today’s programing languages. Unix enabled comprehensive networking of diverse computing systems, providing for the internet’s dynamic foundation. Increasingly, Bell Laboratories inventions for the next two decades expanded micro-computing frontiers, which helped to establish personal computing.    

                                                                        In 1980, Bell Labs tested the first single-chip 32-bit microprocessor, enabling personal computers to handle complex multimedia applications.

 

A major corporate restructure of AT&T, the parent company of Bell Laboratories, was ordered  by the U.S.  Federal government in 1985, to split-up its subsidiaries as part of a  divestiture agreementThis event proved to be an example of overregulation, which severed important links for funding technology R&D projects. Although AT&T previously had an economic advantage with a monopoly in the telephone industry, it allowed for necessary funding of Bell R&D labs.  Indirectly, U.S. taxpayers made one of the best investments by subsidizing the foundation for our current telecommunication and information technology infrastructure. AT&T Bell Laboratories became AT&T Labs official new name in 1996, when it  became part of Lucent Technologies. Since 1996, AT&T Labs has been awarded over 2000 patens and has introduced hundreds of new products. In 2007, Lucent Bell and Alcatel Research merged into one organization under the name Bell Laboratories. Currently, the Labs’ purpose is directed away from science discovery and focussed on enhancing existing  technology, which will yield higher financial returns.

Pause & Reflect: Questions for continuous learning part 1.

1.) What were the first forms of electrical, point-to-point telecommunications? 2.) What revolution was taking place when early forms of telecommunications were invented and name at least two technology innovations? 3.) Define the word technology? 5.) Who founded Bell Research and Development Labs? 7.) Name at least two developments which Bell Labs were awarded Nobel Prizes in? 6.) Pick one Bell Lab invention, which you believe was most important for helping develop modern telecommunications or personal computing.

Any Sufficiently Advanced Technology Will Appear As Magic.

                                                                          — Arthur C. Clarke

 

Advance Technology Takes Root In The West

In the first half of the 20TH Century, Bell Labs’ dazzling R&D creations aligned seamlessly to establish a solid foundation in telecommunications. Most of the Labs’ bold research had been conducted in the industrialized, Eastern portion of the United States. By the 1950s, new evolving industries on the West Coast were benefiting from Bell’s technological developments. Palo Alto’s, Stanford University research facilities, south of San Francisco, attracted corporate transplants— most notably  IBM, General Electric and Eastman Kodak. In 1970, XEROX Corporation of Rochester, New York established a research center known as—Xerox PARC (Palo Alto Research Center Incorporated). PARC’s impact in R&D would soon be felt, acting as a stimulating catalyst for personal computing and information technology development.  

 Creative Sanctuary For Nurturing Daring Ideas

Jack GoldmanChief Scientist at Xerox enlisted physicist Dr. George Pake, a specialist in nuclear magnetic resonance to help establish a new Xerox research center. Selecting the Palo Alto location gave the scientist greater freedom than was possible near its Rochester headquarters. The location also provided huge resource opportunities to select talent pools of engineers and scientist from the numerous research centers located in the Bay Area. Once the West-Coast lab had a foothold, it became a sanctuary for the company’s creative misfits— passionate science engineers who were determined to create boldly. One of the few downsides for the new facility’s location was—less opportunities for lobbying and promoting critical breakthrough developments to top management located a continent away. XEROX PARC had an inspiring creative influence, along with universal appeal, which attracted international visitors. A collaborative, open atmosphere helps to define the creative legacy of PARC. The cross-pollination of ideas and published research between the R&D facility and Stanford’s computer science community, pushed digital innovation towards new thresholds.

A Premier Of Personal Computing Tools Is Unveiled

XEROX PARC, discovered a target rich environment of ideas from  Douglas Engelbart, who worked at Stanford Research Institute (SRI) in Menlo Park. Engelbart gave the Mother of all personal computing presentations in December of 1968, — astonishing the computer science audience with a remarkable debut of: the computer mouse, hypertext, email, video conferencing and much more. Bitmap graphic, graphical user interface (GUI), which provides window features and icons— are just a few of the revolutionary concepts developed by PARC for personal computing. The list of  PC  innovations and developments continues with laser printersWYSIWYG text editorInterPress (prototype of Postscript) and Ethernet as a local-area computer network—inspiring PARC Universal Packet architecture, which resembles today’s internet. Optical disc technologies and LCD, were developed by PARC material scientist adding yet more to its diverse technology portfolio.

 The Shape Of Things To Come

Xerox PARC’s R&D, efficiently blended these vital new technologies and leveraged it all into a personal computer, workstation, called  “Alto.” The futuristic Alto, was light-years ahead of its 1973 debut—bundled with a dynamic utility including: a mouse, graphical user interface and the connectivity of Ethernet. Interest in this revolutionary PC wonder kept expanding as countless demonstrations were given to the legions of intrigued individuals. The increasing demand for witnessing the power of PC computing was telegraphing the need for a new consumer market. For the first time, a “desktop sized computer”could match the capabilities of a full-service print shop. Advance technology always comes with a hefty price tag, and the Alto was no exception, making it beyond reach of most consumers. Despite a high price-point — excitement, fame and glory of Alto grew — as did admiration for the bold new world of Apple Computers and of its superstar founder — Steve Jobs.

Xerox Alto -1973 Was this the apple of Steve Job’s eye? It certainly was the first personal computer, which included most of the graphic interface features we recognize today.

Torch Of The Titans Lights New Horizons

By 1979, Apple was beginning to advance its own flavor of user-friendly interfaces with the development of the Lisa and Macintosh personal computers. Both products featured screens with multiple fonts, using bitmap screens for blending graphics and text. From early on, there were Apple graphic engineers associated with Xerox PARC — either through former employment or in connection with Stanford University. Apple engineers aware of advances made in graphic interfaces with PARC’s ALTO, prompted Steve Jobs to have a parlay with PARC. In late 1979, Steve Jobs with his Apple engineering entourage arrived to view an AlTO demonstration at Xerox facilities. The meeting’s outcome proved Jobs’ was a master of showmanship and marketing JudeJitsu by not disclosing a previously negotiated, sizable investment from Xerox’s venture capital group.

Gravitational forces began shifting in favor of Steve Jobs and Apple Computer to capitalize on the market potential for personal computing. PARC computer engineers and scientist clearly understood the economic potential of an information business they help to build… but top Xerox executives certainly did not.  Xerox had a history of dominating the lucrative copy machine market — this was the business model Xerox corporate decision makers were comfortable with and they would not risk venturing very far from.

Most of PARC’s personal computing developments experienced the same frustrating fate of being cherry picked by others —  allowing for lucrative opportunities to go for bargain rates to new companies like Apple Computers. Apple’s alchemy of — perfect timing, creative talent and visionary insight quickly aligned towards harnessing information technology products for an emerging market convergence. The creative inspiration and marketing savvy, which Steve Jobs’ applied towards personal computing—created  seismic ripple effects, which we’re still experiencing today.

.

Nothing Ventured, Nothing Gained  

Recently, there’s been a handful of media and tech industry critics, siting undeserved shortcomings of Bell Labs and Xerox PARC. Too often, corporate R&D labs are faulted for not fully marketing their technology developments or capitalizing on scientific inventions. Rarely mentioned in these over-simplistic reviews, is an understanding an R&D’s purpose or mission of innovation, which is directed by the parent company’s strategic goals. Failing to understand the reality of this relationship, detracts from the technological importance and diminishes the accomplishments of these remarkable engineers and scientists. Lost in the critics hindsight is an under-reporting of the titanic obstacles facing the marketing, manufacturing and distribution of innovative products.

.

Thrilling technical breakthroughs are what grab headlines — rarely are the successful efforts of corporate marketing or brilliant production logistics recognized or mentioned.  It’s a disconnect to judge a R&D’ lab’s success completely on the financial returns of its inventions.

The laser printer in particular, removes the myth that Xerox PARC mismanaged all of its developments. Gary Starkweather, a brilliant optical engineer for Xerox PARC, developed the laser printer. Starkweather had pitched battles with Xerox management over promoting the laser printer, but eventually he triumphed and the laser printer went on to earn billions of dollars — enough to repay the investment cost of Xerox PARC several times over. Eventually Starkweather moved on to greater opportunities when Steve Jobs offered him a job in Cupertino.

Brilliant R&D technology, requires an equally creative or open-minded group of executives for  converting technology innovation into a marketable product.  These decision makers must maintain iron-wills and courage to shepherd the technology product through its entire volatile development process.

IBM’s iconic 305 RAMAC, the first commercial ‘super computer,’  is a classic example of a product development challenge. Introduced in 1956, the RAMAC featured a hard disk drive (HDD) and stored a — whopping five megabytes of data. Apparently, the HDD storage capacity could’ve been expanded well beyond the 5MB, but was not attempted because — IBM’s marketing department didn’t believe they could sell a computer with more storage.                   

IBM 305 RAMAC — first commercial computer to use a hard disk drive in 1956.

R&D Labs take creative risk in developing new ideas, most of these developments won’t make it to market, but that’s the price of creativity. Using intuition for taking risks and knowing some failure is necessary to pave the road toward successful discoveries — builds confidence in trusting one’s creative resources. So often, the creative-process is misunderstood and undervalued in our society’s perceived need for instant control and results. In the past, I’ve personally witnessed this attitude reflected in our educational system, however the viewpoint is  progressively shifting to realize the value of the creative-process. Steve Jobs and Apple Computers are a good illustration of a company, which traditionally emphasized and embraced the creative spirit. Creative employees are considered the most valued resource at Apple as they are encouraged to nurture their creative uniqueness. Shortsighted emphasis on quarterly results, which has affected most of American business culture, is refreshingly absent from Apple’s overall mindset, allowing for more sustained and successful business initiatives.

Where Have All The R&D Labs Gone — Innovation Versus Invention

The era of industrial, ‘closed inventive’ research & development labs — have faded into the background of yesterday’s business culture. Internal silos, once the proprietary norm, have been day-lighted to allow fresh ideas and collaborative efforts to circulate.

For the past 10 years, corporations have steadily reversed their long-term, pure scientific research in favor of  efforts towards quicker commercial returns. In 2011, Intel Corporation, dropped its  ’boutique’ research lablets‘ in Seattle, Berkeley and Pittsburgh  — opting for academic research to be conducted at university facilities. Intel continues to maintain its more profit oriented Intel Labs. This industry strategy, repeatedly cloned itself within the corporate research world, as it is far easier to realize a profit from innovation than pure invention.

Perhaps the golden-age of great research & development labs have run their course — but not before replacing the analogue, industrial era technology with a digital one. A century ago, using creative, innovative and bold scientific vision, Bell Labs set the standard for future R & D Labs. Xerox PARC, helped to extend Bell Labs’ marvelous inventions and innovations with a solid platform of creative research for developing mass markets in the postmodern telecommunications and personal computing of today.  ~

 

  Pause & Reflect: Questions for continuous learning – part 2. 1.) Name the parent company (based in New York) featured in the essay and its research and development lab, which moved into California’s Bay Area? 2.) What was the profitable product (used for duplicating documents), that  this company had originally been built on? 3.) Give at least two reasons why this R&D lab was so inventive? 4.) What stopped the lab’s parent company from realizing more profits from its inventions? 5.) What was the name of  both the young, iconic tech entrepreneur and his company (named after a red fruit), who was able to creatively package and market early Silicone Valley PC innovations? 6.) What’s the difference between invention and innovation? 7.) In your opinion, who were the top 10 inventors of all time and how did they make your top 10?

.

.

References & Links    

wp- CREATIVE COMMUNITIES v5.indd
Bell Labs – Wikipedia, the free encyclopedia
Bell Labs
Telstar 1: The Little Satellite That Created the Modern World 50 Years Ago | Wired Science | Wired.com
Was Bell Labs Overrated? – Forbes
Top 10 Greatest Inventors in History | Top 10 Lists | TopTenz.net
History of Lucent Technologies Inc. – FundingUniverse
Volatile and Decentralized: The death of Intel Labs and what it means for industrial research
Inventive America | World | Times Crest
Bell Labs Kills Fundamental Physics Research | Gadget Lab | Wired.com
http://www.westernelectric.com/history/WEandBellSystemBook.pdf
HistoryLink.org- the Free Online Encyclopedia of Washington State History
Xerox PARC, Apple, and the Creation of the Mouse : The New Yorker
1956 Hard Disk Drive – Disk Storage Unit for 305 RAMAC Computer
IBM 305 RAMAC: The Grandaddy of Modern Hard Drives
WSJ mangles history to argue government didn’t launch the Internet | Ars Technica
A History of Silicon Valley

.