Will The Next Jet Airliner You Fly Be Obsolete, And Ready for Early Retirement?


Multimedia eLearning program authored by: David Anthony Johanson ©  – All written & graphic content on this site (unless noted) was produced by the author. Add: 2.0  For an alternative graphic format presentation, please visit: https://sciencetechtablet.wordpress.com/tag/commercial-jet-airliner-obsolescence/ 

This multimedia essay includes an eLearning program for secondary/post secondary education and community learning. Assessment tool: A quiz and answer key is located at the end of the program. Learning content covered: aerospace/airliner— aerospace engineering, avionics, economics & business, environmental footprint, financing, manufacturing, marketing, obsolescence management, technology. Learning concepts used: Applied Learning, Adult Learning, Competency-based Learning, Critical Thinking, Integrative Learning.Key: Words or phrases italicized are used to focus on essential concepts or terms for enhanced learning and retention.

[ Disclaimer: David Johanson is a former Boeing scientific photographer and currently has no stock holdings or a financial interest in: Boeing, Airbus or any other companies referenced in this program. Research in this article has been cross referenced using at least three sources, however, all perspectives and opinions represent only the viewpoints of the author.]

Like seeing a mirage in the distance, shimmering sunlight reflects off rows of metal fuselages densely packed in the summer light. A surreal scene of Boeing jet airliners dominates the view, while forming a metallic wall around sections of a regional airport.

Boeing_Paine_Field_747_ae3013Billions of dollars worth of jet airliners are now double parked around Paine Field, Snohomish County Airport, in Everett, Washington. “This development indicates the current success, Boeing is having at landing airliner orders and the result you’re seeing represents a record amount of aircraft production,”said Terrance Scott, a spokesman for Boeing Commercial Airplanes.

He said the Company is leasing this space from Paine Field so that planes can have the remaining work completed and be ready for delivery to their customers — also, this isn’t unique to Everett, but is happening at Boeing manufacturing facilities at Renton Field and at Boeing Field in Seattle.

“Boeing has always been a good neighbor and a fine customer for the airport, they are currently leasing areas to park their aircraft and the revenue generated is appreciated.” said Dave Waggoner, Airport Director at Snohomish County Airport — Paine Field.

The global economy’s steady growth has increased passenger traffic, which puts pressure on the airlines to purchase new aircraft for satisfying demand. Continued drops in jet fuel prices benefits air travel industry profits, giving further incentives for fleet investments. Additionally, with historically low-interest rates, lending institutions find new opportunities in aviation financing, enabling expansion of corporate sales. However, financing for used planes is another matter. Cash is drying up for previously owned jetliners — which puts pressure to part-out, then scrap relatively newer-used aircraft. Boeing_Paine_Field_BPP_ae3009



Could The New Normal Be Shorter Aircraft Service-Life For Airliner Fleets?

Recently, published reports noted a shift towards an assumed obsolescence and accelerated scraping of newer airliners — well before structural integrity or air worthiness becomes a problem, middle-aged aircraft are experiencing vulnerability to an early end-of-life. Clearly, accelerated scraping of newer aircraft is not due to any structural concerns, but rather, cyclical conditions of the industry. To appreciate these concerns a review of an airliner’s operational lifespan may help clarify some of the issues.

Aircraft manufactures use pressurization cycles to determine an airliner’s operational lifespan. A pressurizing cycle includes three distinct aircraft flight activities — takeoff, climbing until it reaches a cruise altitude and then landing. During this process, air is pumped into the fuselage to pressurize the cabin for passenger comfort. This repeated pressurization flexes or expands the fuselage — consequently stress is put on various connecting components, including fasteners and rivets — which helps to hold the structural integrity of the plane together. After a certain number of landing pressurization cycles, stress or metal fatigue can begin to develop, eventually causing small cracks around the fasteners. Pressurization/landing cycles mainly concern the life of an aircraft’s fuselage, wings and landing gear.

The interior of fuselage section, showing perpendicular rings, which are called frames.

The interior of fuselage section, showing perpendicular rings, which are called frames.

The interior of fuselage section, showing perpendicular rings, which are called frames.

Maintenance schedules and lifespan of jet engines are measured in the number of flight hours. Aircraft engines, followed by landing gear and then avionics are the most valuable components for part-out and dismantling specialist operations. Ultimately, engine condition is the major factor in an owner’s decision to part-out an aircraft.

For short flights, single or smaller double aisle craft are used to carry passengers, which may go through many landing or pressurization cycles for everyday operations. The more takeoffs and landings, means a shorter operational lifespan for the plane. On long overseas flights, wide body or jumbo jets such as 747s experience fewer landing cycles. These larger airliners, especially ones use for cargo operations can have longer lifespans of upwards of 20 or 30 years. In the U.S., the FAA requires an initial inspection on Boeing 737s, which have 30,000 takeoffs and landings using electromagnetic testing. Mandatory inspections are required for finding cracks in the fuselage or metal fasteners.

Dreamliner_BPP_e2121Boeing has a history of ‘over-engineering’ components of its aircraft, which is actually a good thing for ensuring passenger safety and for an extended service-life of the aircraft. Historical evidence of this conservative engineering practice is documented in WWII archival film footage of blown-apart B-17s returning from a mission and safely landing. There are more recent examples of Boeing commercial aircraft surviving dramatic inflight catastrophic failures, with most of the passengers and crew landing safely.

Photo-illustration of an aircraft end-of-life center (aircraft boneyard.)

Photo-illustration of an aircraft end-of-life center (aircraft boneyard.)

Compound Forces Working Against Long-Life-Cycle Aircraft

What are the current forces, which hasten the end-of-life of a commercial jet airliner? Recurring cycles or patterns of economic and technological events influences the commercial aircraft industry on a daily basis. Various ripple-effects of these cycles can quickly alter new and used aircraft asset valuation. Airline leasing companies have a major influence, in providing their customers with the aircraft assets they need. Unless the buying customer has solid credit, it’s doubtful they can secure financing for previously-owned airliners. Also, tax incentives exist for Airline companies to use depreciation right-offs by decommissioning all but the most advance aircraft assets. photo illustration

Maintenance requirements are a long-term, yet fluid, financial concern for a company’s airline fleet. The newer designed aircraft are manufactured with significantly fewer parts than previous models. Consequently, reduction in parts has an impact on reducing maintenance expenditures — including smaller service crews, hours spent on inspection and a reduction of overall repairs. Also, spare parts inventories for maintaining the aircraft’s optimum performance can substantially be reduced compared to an older aircraft. The cost savings benefits are compelling incentives for eliminating older, higher maintenance, aircraft assets.

Boeing_Flt_Line_BPP_bg0187As mentioned previously, the considerable reduction of parts used in manufacturing newer aircraft provides an immediate benefit of up to 20 percent weight reduction. Without compromising strength or aircraft structural integrity, the cost savings from less weight begins the day an airliner is put into service. Traditionally, fuel-efficiency is the “holy grail” used for selecting an aircraft — the amount of fuel-burn affects the daily operational cost of an airline company. After a decade of service an older airliner reaches mid-life, it may require upgraded and modification conversions to the aircraft’s wings (winglets) or need new fuel-efficient jet engines. However, these conversions reach a threshold of diminishing returns from such investments. As a result, keeping an older aircraft competitive with newer models may not pay off at a certain point. That’s when permanent retirement and parting-out the airliner begins to make economic sense and the aircraft’s end-of-life management begins.Boeing_Paine_Field_BPP_ae3134

Inevitable Problems Facing Aircraft Electronic Systems (Avionics) Obsolescence

The most perplexing problem facing all commercial aircraft is how to ensure its critical avionics systems continue to evolve and stay up-to-date. Avionics provides the central nervous system or a central processing unit (CPU) framework for a commercial aircraft. It’s a marvelous matrix of advanced electronic systems technology, which constantly communicates with itself, the pilots and the outside world. More so than any other components making up an aircraft’s technological system, its management and functionality duties are beyond comparison. Each year avionics components physically contract in size, yet they expand immensely in functionality and system management. 

Cell_Phone_Tlk_BPP_et82Here’s an example to help clarify this dichotomy of physical contraction and expansion of technical functionality. Your smartphone can be used as a basic representational model for avionics obsolescence. The phone you’re holding in your hand has a superior mobile graphics processor and sheer number-crunching power advantage over IBM’s Deep Blue supercomputer of the late 1990s. Yet, you can hold your phone in hand, compared to Deep Blue, which was the size of a large refrigerator. However, advanced your smartphone is today, a year from now it’ll be obsolete and two years from now… a quaint antique.  If you grabbed your smartphone and considered the example, you just experienced Moore’s law of observation — ‘over the history of computing hardware, the number of transistors in a dense integrated circuit doubles approximately every two years.Man_micro_chip_BPP_et169

Now, imagine trying to update a complex system such as an airliner’s avionics bay, in five-years, 10-years or 15-years. The installation and the majority of electronic systems are not made by the Aircraft’s original equipment manufacturer Mars Frontier series(OEM) such as Boeing or Airbus. Moreover, the vendors or suppliers 10 or 15-years from now who were the OEM, may be out of business.  In the meantime, new replacement components may have to substitute the obsolete equipment. However, the aircraft industry is highly regulated by government agencies, which require strict certification of equipment modifications. As a result of these constraints, aircraft manufacturers such as Boeing, developed obsolescence management strategies to help mitigate these ongoing concerns. But there are always unforeseen obstacles and many moving parts to coordinate before the necessary electronic components are available when needed. Clear, transparent communication is necessary between internal engineering and purchasing departments. Successful collaboration at all levels can present major challenges, especially if the objectives and timetables are not each group’s priority.

So aircraft avionics are the vulnerable underbelly of airliner obsolescence — with financial consequences associated with accelerated, technology — necessitating complex and expensive electronic upgrades.


Airspace Navigation Service Providers (ANSP), which includes the FAA and the European counterpart EASA — have established new mandate requirements for avionic component upgrades. The purpose of this technology is for enhanced data link digital communication, which interacts instantly with aircraft Flight Management Systems (FMS). These requirements include, Automatic Dependent Surveillance-Broadcast (ADS-B), Controller-Pilot Data Link (CPDLC) and the Future Air Navigation System (FANS) enables text messaging and global position through satellite communications. The new civil aviation mandates are part of the next generation air traffic computer technology called NextGen, which represents air traffic infrastructure’s future for the next 10 to 15 years.

Used Aircraft Components, Harvested For Premium Returns, Is The Retired Airliners Last Call In Service Before Its Final Destination.

Perhaps aircraft boneyards are flying under the radar as virtual gold mines, as refurbished parts are easily sold at market value. The savings of buying used, over new aircraft parts is incentive for expanding the market. Engines, landing gear and avionics are the most expensive components of an aircraft. These prized components are a highly valued commodity and are quickly snapped up. Specialized systems are not manufactured by companies such as Boeing or Airbus, but by outside OEM. Parts sold brand new by the manufacturer are considerably more expensive than buying used.

Money_int _BPP_a223Next Generation aircraft such as the Boeing 737-600 and even a 737-800, which was reported to have had a hard-landing, reached their end-of-life as scrap.  Also, Airbus has had similar, newer single-aisle aircraft models reached their final destination in the aviation boneyard.  Aircraft Fleet receivable Association (AFRA) estimates 600 commercial jet airliners are scrapped yearly. By 2023 it’s estimated the number of commercial airliners scrapped will reach 1000 per-year.

Efforts Of The Aviation Industry To Leave A Smaller Environmental Footprint.

In 2008, the Boeing Company reached out to Airbus in collaboration, with the goal to vastly improve aircraft recycling technology. Airbus estimates they are recycling 85 percent of the entire aircraft, the remaining cabin interior amounted to 15 percent and was the only materials added to landfills.     Earth Day 2010

The best takeaway from the issues surrounding accelerated airliner service-life is that less fuel is consumed by the newer fleets. As older, less efficient aircraft are replaced — a 20 percent reduction in fuel emissions will not enter the atmosphere from the next generation aircraft replacements. If the world’s commercial airline manufactures continue to devote more effort towards efficient recycling of past generation aircraft, we can look forward to clearer skies ahead.         ~
photo illustration

Special thanks to The Future of Flight Museum, for allowing photos to be taken from their excellent observation deck.

http://www.futureofflight.org                       A surprise appearance of a Boeing Dreamlifter has photographers scrambling to be ready.


Aerial view of Paine Field Airport looking north.

Aerial view of Paine Field Airport looking north.

Airliner Obsolescence Quiz    (Read the entire question before answering.)

1. ) What three economic incentives are currently influencing airlines to purchase new aircraft for satisfying travel demand? ______________________________________ _________________________________ & _________________________________
2. ) (True or False) Structural integrity or air worthiness of current generation airliners is the main issue why these aircraft are being retired early. _______ If you answered false, give at least one other reason why this is occurring. ____________________________ _____________________________________________________________________
3. ) Aircraft manufactures use, what type of  ___________ cycles to determine an airliner’s operational lifespan?
4. ) Name the three distinct aircraft flight activities used to determine an airliner’s operation lifespan? _________________________ __________________________ ____________________________________________
5. ) Maintenance schedules and lifespan of jet engines are measured in the ________________ hours.
6. ) Aircraft _________ followed by ____________ and then ___________ are the most valuable components for the part-out and dismantling specialist operations. Fill in the blanks above by selecting the proper order of component value, using the following list: (bulk heads) (wire bundles) (avionics) (engines) (landing gear)
7. ) Selecting from the choices listed below, which aircraft will typically experience more pressurization cycles and why? A or B ____________  A. Jumbo jet (larger, multi isle aircraft) which is used for longer, overseas flights. B. Smaller, single isle jet airliners, which are used more for shorter, domestic flights.  Now explain why? ______________________________________________________________________ ______________________________________________________________________    8. ) Multi-isle airliners or jumbo jets, used for longer international flights or for cargo operations can have life cycles of upwards of ____ – ____ years. Select the best match from these sets: 5 − 15, 10 − 15, 20 − 30, 30 − 40 years. 

9. ) Explain why a larger commercial jet airliner, which flies longer over-sea routes, would have a longer operational life than a smaller aircraft, which is used on much shorter routes? __________________________________________________________________ ________________________________________________________________________
10. ) What procedure is required by the FAA for a Boeing 737 airliner, which completes 30,000 takeoffs and landings? _______________________________________________ ________________________________________________________________________
11. ) The newer designed aircraft are manufactured with significantly fewer parts than previous models, list at least two reasons why this is an advantage and would make older aircraft obsolete? _______________________________________________________ ______________________________________________________________________
12. ) What aircraft component traditionally has been considered the “holy grail” used by the airline industry for selecting an aircraft? _____________________________________
13. ) When permanent retirement and parting-out the of an airliner begins to make economic sense, what form of management begins for that aircraft? ____________________ Select one of the following: end-of-days, end-of-life, retirement cycle, recycle phase.
14. ) What critical system of an airliner is considered its “central nervous system” or CPU for overall control of the aircraft? ________________________________ Give at least two reasons why this system contributes to a jet becoming obsolete? ________________________________________________________________________ ________________________________________________________________________
15. ) Approximately how many aircraft are permanently retired or scrapped in a year? __________________ By 2023, how many aircraft are expected to be scrapped? _____________________
16. ) Regarding commercial aircraft recycling technology, what percentage does Airbus estimate it is recycling of the entire airliner ___ 40 %, 65 %, 75 % or 85 % What percent of the aircraft is not recyclable ___ 60 %, 50 %, 25 %, or 15 %  What part of the airliner is not recyclable ____________________ and where does it end up? _______________
Answer key is located at the very bottom, after program sources & related links

Sources & Related Subject Matter Links

This link shows live air traffic anywhere in the world. View how congested the sky’s are over the world’s busiest airports.


Aircraft Bluebook – Used for aviation asset valuation










Article & photos on U.S. aircraft boneyards



Article, photos & interactive map of U.S. aircraft boneyards


Excellent aerial video of Airplane Graveyard (Mojave Airport, California)



Airliner Obsolescence Quiz Answer Key

1.  ) Satisfying increased travel demand   Fuel cost savings & Historically, low-interest rates for financing new aircraft

2.  ) True    Newer aircraft are replacing airworthy, older aircraft due to much less operating cost, including fuel savings and maintenance issues.

3.  ) Pressurization or Landing cycles

4.  ) Takeoff    Climbing to cruise altitude    Landing

5.  ) Number of flight hours

6. ) Engines  landing  gear avionics

7. )       Shorter service routes typically involve more landing and takeoffs as the airliner satisfies domestic travel demand

8.  )   2030 

9.  )  An airliner flying overseas route would most likely have fewer takeoffs and landings, due to the longer flight time required to reach its destination

10.)  Electromagnetic testing for finding cracks in the fuselage or related components

11.)   Fewer parts can result in an airliner weighing up to 20 percent less than older models, which can correlate to the same percentage of fuel savings. The maintenance cost is substantially lower allowing for more savings over older aircraft with more component parts.  

12.)  Fuel-efficiency

13.)  End-of-life

14.)  Avionics   electronic components used for avionics may not be available or upgradeable due to obsolescence   upgrading obsolete avionics may require expensive redesign

15. )   Up to 600   1000

16. ) 85 %   15 %   Cabin interiors   Landfills

[contact-form][contact-field label='Name' type='name' class="GINGER_SOFATWARE_correct">/][contact-field label='Email' type='email' class="GINGER_SOFATWARE_correct">/][contact-field label='Website' class="GINGER_SOFATWARE_correct">/][contact-field label='Comment' type='textarea' class="GINGER_SOFATWARE_correct">/][/contact-form]

Boeing’s 787 Dreamliner Historic First Flight From Paine Field, Everett, WA.

Multimedia and video essay by: David Johanson Vasquez © All Rights

The presentation includes: Video of a 787 Dreamliner first flight, aerospace structural testing practices, aerospace engineering design practices, aerospace manufacturing, fiber composite materials.  

My video camera kit had been prepared months in advance, ready at a moment’s notice for the first maiden flight of Boeing’s 787 Dreamliner—21st Century entry airliner.  Finally, Dave Waggoner, the director of Paine Field Airport, queued me into the date to witness an evolutionary advance in commercial aviation.

Cameras Packed And Ready To Go

My home is only a short drive from Boeing’s production facilities at Paine Field, Everett; so I was motivated to video record this “making of 21st century aviation history.”  Due to initial production delays, an entire year went by before I received reliable news of the 787-8 wide-body, long-range airliner was ready for her much-anticipated maiden flight. The 787 Dreamliner’s first flight was at 10:27 a.m. PST, December 15, 2009.

Experienced As A Boeing Scientific Photographer

The 787, first flight video project brought back some great memories from my former career as an aerospace photographer with the Boeing Company.  When first hired on by the iconic aviation leader, my assignment involved providing video support for the Everett plant’s test engineering groups, who were conducting bulkhead fatigue test on airline fuselages. In preceding years, some airlines began experiencing inflight catastrophic failures related to metal fatigue. Tragically  the determined cause was from the age of the aircraft, specifically, stresses created when interior cabins went through an excessive number of pressurization cycles.

BOE 747 skin_BP_Pbgl747

An event in the 1980s, of a Boeing 737 was dramatically documented as it safely landed with a massive section of the fuselage missing. The Aloha Airlines, 737 jetliner experienced a catastrophic failure due to metal fatigue. The metal fatigue issues caused from pressurization cycles on the aircraft were not clearly understood, so the FAA required engineering test to research the potential safety threat.A series of highly documented Test were conducted over a period of months; going through thousands of pressurized cycles.  The purpose was to recreate what a jet airliner physically experiences when the cabin is repeatedly pressured and unpressurized — as in every-time an airliner takes-off, gains altitude and eventually returns for its landing. Our team of scientific photographers had series of video cameras, strategically placed within the test bulkhead, which sat shrouded in layers of protective coatings, in a remote section of the Everett facilities. Over-pressurizing the bulkhead eventually caused the anticipated failure, announced  by a thunderous sound of cracking metal. The  bulkhead  test was well documented using various engineering test methods and imaging equipment. Valuable test data gathered was immediately analyzed, studied and put to methodical use for redesigning, engineering and manufacturing safer jet airlines.

Examining a fuselage section of the 787 which uses composite carbon fiber materials.

Boeing’s Traditional Practice Of Over-Engineering

It’s been my experience, which confirms for me, what commercial pilots and engineers claim regarding Boeing’s reputation with its conservative practice of “over-engineering” their aircraft.  Historically, an over-engineering approach has proven itself as a life saving benefit — with countless Boeing aircraft surviving horrific damage… yet, still landing safely. Documentaries on WWII aircraft feature  shot-up Boeing aircraft returning safely, is an example of over-engineering.

For teams performing test  monitoring, with elaborate configured structures,  attached string gauges and actuators trying to force a break of an airplane part — the aerospace test may go on for days, or even months — the experience feels like sitting in bleachers for hours while watching slow-motion glacier races in progress.  All the invested resources of  time and effort, which goes into these aerospace component test,  helps to assure the flying public’s safety and the airlines performance records.

Engineers enjoy seeing how much torturous abuse their designed support systems will take before they bend, crack or break.  At the instant  a component does finally fail [normally, after far exceeding the range of what the it was designed to do] you’ll hear a loud noise caused from a test-object going beyond its limit. The sound of a breaking part, ends the tension of monitoring a test for hours or days — in an instant, the group of test engineers and technicians start cheering like a goal was scored by a home team in a stadium full of their fans.

Boeing 787-8 Dreamliner taxiing for its historic, maiden flight on December 15, 2009 from Paine Field Airport, Everett, WA.

Carbon Fiber Future In Aviation

One of many significant technological improvements for the new long-range, wide-body 787 Dreamliner, is a high percentage of composite, carbon fiber materials used in its construction. The amount of composite, materials employed in today’s aircraft have substantially increased from when it was initially developed  and used in military aircraft.  I recall, how amazingly light wing spares made of carbon fiber composite materials are, when moving them under lighting setups at Boeing’s Gateway studio.  It was fascinating observing and photographing the manufacturing of composite materials, as the process involves using massive heated autoclaves to form predesigned sections for aircraft structures.Now, remember the bulkhead test from a previous paragraph?  Carbon fiber composites eliminates the issue of metal fatigue associated with pressurizing  passenger cabin space.  Less concerns over metal fatigue allows for more pressurization  in the cabin for passenger comfort  — more importantly, the  integrated use of composite materials ensures greater safety, with substantially less risk to the structural integrity of the airliner.

Is Boeing’s Reliance On Outsourcing The Main Culprit For The 787 Dreamliner Being Grounded In A Global Lockdown?

In the past 15 years, Boeing’s upper management has broken formation from its traditional engineering leadership and replaced it by promoting executives with business and marketing backgrounds. The current Boeing regime embraces an outsourcing strategy, unfortunately, this trend of maximizing profits for shareholders has been on going with U.S. companies for the past two decades. Negative consequences of replacing an engineering management with a business one is clearly apparent in the power transmission industry — deregulation & marketing-driven-management  in the electric power industry has significantly placed this essential infrastructure at risk [overstretched power grid, vulnerable outdated high-power transformers.] Please see my multimedia essay – Will the Last People Remaining In America, Turn the Lights Back On? :http://sciencetechtablet.wordpress.com/tag/solar-storm-testimony-to-u-s-senate/                                           

                                                 Money_int _BPP_a223                                                                                                                                                 

A heavy dependence  on  foreign outsourcing is cited as a cause for unforeseen 787 production delays. Consistent, quality control monitoring becomes problematic when components are manufactured offsite, as result these issues can sometimes lead to extended,  unanticipated problems.photo illustration

Outside vendors are capable of producing equal, if not superior quality components to that of Boeing in some technical areas. In fact, there are legions of aerospace companies in the Puget Sound region, which supply critical parts to the 787 Dreamliner’s manufacturer. Some outsourcing is absolutely necessary for Boeing to compete with Airbus. The concern is outsourcing critical components in a new airplane program, which is attempting to use technology never used in a commercial airliner. It’s ironic, li-ion batteries are at the center of the 787’s grounding — lithium batteries have been a concern for over a decade to the FAA, TSA & NTSB, even leading to bans & restrictions for passenger’s to bring on commercial flights. It’s almost hubris or a form of high-risk gambling, to “initially” rely so heavily on outside vendors [GS Yuasa, the Japanese firm making the li-ion & Thales, the French corporation making the batteries’ control systems] for producing an unproven, prototype system. L PI CRTBD BPP et99

While working as a Boeing employee in the 1990s, I recall an incident with a vendor supplying thousands of counterfeit aircraft quality fasteners made in China. Fortunately, the fiasco was caught early — but not before many hours and dollars were lost, going back to inspect wings on the production line, to remove and replace the defective fasteners. Unless solid

photo illustration

 metrics are emplaced to assure critical standards are met for each component, it’s only a matter of time before a failure will occur. Boeing has traditionally been an aerospace company, which “over engineers” it airplanes & errors on the side of safety. Hopefully the company has maintained & continues to practice these quality assurances. Outsourcing is practical both economically and politically for companies with international sells. It’s a successful strategy Boeing has used for many years; outsourcing has proven to provide incentives for foreign airline companies to buy Boeing aircraft, in order to support their own domestic aerospace industries.            World_box_BPP_et424The American auto manufacture Tesla, had similar “thermal runaway” issues when first using li-ion batteries to power its Roadster. Tesla Motors, benefited from its learning curve by switching to Lithium Iron Phosphate batteries, which run at cooler temperatures. The innovative auto manufacture also developed its own battery pack architecture, with proprietary liquid cooling system packs — for controlling battery cell temperatures within self-contained, metal lined enclosures.  The nontoxic, Tesla battery packs are manufactured domestically in Northern California. Perhaps Boeing should be considering manufacturing all critical systems in-house and domestically as Tesla has done.  Boe_ing_747_stock_BPP_E221

According to MIT Technology review’s – Kevin Bullis, who points to Boeing’s battery manufacture,  GS Yuasa’s web site ,  the 787 is using Lithium Cobalt Oxide batteries, which it also manufactures for the International Space Station. These batteries are categorized  as “high-energy storage capacity,” but are not considered resistant to heat as other battery chemistry. Another issue I’m speculating could contribute to the  787 li-ion batteries overheating relates to Boeing reintroduction of an [electrical compressing system] to provide higher pressurization for the cabin environment. This type of cabin pressurization system requires more electrical energy than standard systems, so could this be putting additional demands on the batteries? Part of the advantage to using more composite materials in the 787 was to reduce metal fatigue caused from the cabin pressurization cycles. The Dreamliner uses higher cabin pressure than most aircraft to make it more comfortable for passengers — however, li-ion battery manufactures specifically warns against over-pressurizing these batteries. Is the cabin pressure contributing to pushing the li-ion beyond their tolerance?

Whether or not the stated technical issues are of a real concern for the onboard battery system packs, can only be determined by thorough testing.L TEC ELMICROS BPP et211

Again, it’s to early to know the exact extent of the problem with the 787’s battery systems. The issue will soon be isolated, as Boeing has long history of thoroughly testing and over-engineering its aircraft systems. One thing is certain, it’s rare for Boeing to experience a new aircraft being grounded simultaneously by  Japan’s transport ministry and by the FAA.

Ultimately,  A Bright Future Awaits The 787 Dreamliner

Gaining profitable fuel savings by developing a lighter, wide-body aircraft, combined with the fuel-efficient, GE or Rolls Royce engines, produces a major advance for airliner capabilities.  The tangible benefits in comfort, interior lighting and convenience  contribute to a remarkable passenger experience.  All the evolutionary, technical advances in the Boeing 787 Dreamliner, creates a remarkable new development  for commercial aviation. ~

Future of Flight Museum - Mount Rainier & Paine Field in background - Everett, WA

Future of Flight Museum – Mount Rainier & Paine Field in background – Everett, WA

Boeing 787 Dreamliner Maiden Flight – December 15, 2009 – Paine Field, Everett, WA.  Video by: David Johanson Vasquez © All Rights Reserved