GONE IN 30 SECONDS…

Antares_launch_graphic_ae2

It’s estimated that an average of 8 percent of all commercial rocket launches end in failure.

Multimedia eLearning program by: David A. Johanson © All Rights

David Johanson is a multimedia specialist, CTE instructor and a former Boeing scientific photographer. All content, including photography, graphics and text (unless otherwise noted) was created by the author. To see an alternative graphic format of this program, click on: www.ScienceTechTablet.wordpress.com 

Learning Objectives Of This Program Includes:

≥ Definition and meaning of space law

≥ History and development of space law

≥ History and development of 20TH and 21ST Century Rocket and Launch disasters

≥ How, where and why rocket launch sites and space portals are located on the globe

≥ Potentially life threatening activities and components of rocket launches                           ———————————————————————————————

 

The Antares 110 rocket engines roared as they illuminated their departure from Earth — seconds later, appearing as if mortally wounded, the multi-staged rocket suddenly lost momentum and sank downward, creating an explosive tower of flames. Over the launch site’s PA system an urgent command required all media personnel to leave their equipment and evacuate immediately. It was reported no deaths had occurred — however the total environmental damage, the launch site cleanup and insurance liability issues are yet to be assessed.

Orbital rocket explodes after launch

antares-rocket-explosion-orb3-nasa-photo-BPP_ae3

Here’s NASA video of the unexpected Antares rocket launch disaster.      http://www.youtube.com/watch?v=aL5eddt-iAo

The referenced video below shows, press journalist and photographers ordered to evacuate as the Antares rocket explodes and unleashes toxic clouds of vaporized solid rocket propellant. Winds should be blowing to the east, so that burning propellant dissipates over the Atlantic Ocean — not heading west towards potentially populated areas, as is indicated happening in this video. http://www.youtube.com/watch?v=IclTka711xo

Photograph: Kenneth Brown/Reuters

Photograph: Kenneth Brown/Reuters

On October 31ST, just three days after Orbital Sciences’, Antares rocket launch explosion, Virgin Galactic’s SpaceShipTwo (SS2) disintegrates in an upper altitude reentry over California’s Mojave Desert. Unfortunately the space plane’s pilot was killed, as the remaining components of the craft slammed into an unpopulated area.  http://www.youtube.com/watch?v=dy1k5s7Fbl0 http://www.theguardian.com/science/2014/nov/02/virgin-galactic-spaceshiptwo-crash-investigators-fuel-warnings

orbital_crs3_launch_milestones_e What Goes Up, Must Come Down

Rocket launch projects have always had to contend with laws of physics, in particular, Newton’s law of gravity. Today, these multimillion dollar programs are governed by another set of laws, involving multinational, liability space laws. These binding laws are for protecting individuals, communities and the environment from impacts caused by, man-made objects launched into space or subsequent damage of corporate or national operations in space.

Case Study: The first record of a space law liability incident occurring was in 1962, on a street within Manitowoc, Wisconsin. Apparently, a three-kilogram metal artifact from the Russian’s 1960, Sputnik 4 satellite launch, reentered the atmosphere unannounced, over an unsuspecting Midwest. The Russian’s denied it was theirs, fearing liability under international law. This event, helped set in motion, the 1963 Declaration on Legal Principals Governing the Activities of State in the Exploration and Use of Outer Space. As an international agreement, it puts forth the responsibility to the State which launches or engages in sending objects into space as internationally responsible for damages caused on Earth. In 1967, the agreement was slightly modified and was titled “Outer Space Treaty 1967.”satellite_crash_bpp_e1070

Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law assesses the liability for damages caused by space debris to the nation or agency responsible for its original rocket launch.

Hawa_Futur_BPP_e26

By 1984, the United Nations General Assembly, had adopted five sets of legal principles governing international law and cooperation in space activities. The principles include the following agreements and conventions.”Outer Space Treaty” – the use of Outer Space, including the Moon and other Celestial Bodies (1967 – resolution 2222.) “Rescue Agreement” – the agreement to rescue Astronauts/Cosmonauts, the Return of Astronauts/Cosmonauts and the Return of Objects Launched into Space (1968 – resolution 2345.) “Liability Convention” – the Convention on International Liability for Damaged Caused by Space Objects (1972 – resolution 2777.) “Registration Convention” – the registration of Objects Launched into Outer Space (1975 – resolution 3235.) “Moon Agreement” – the agreement Governing the Activities of States on the Moon and Other Celestial Bodies (1979 – resolution 34/68.)

Sky_look_ BPP_ae208Because so many international languages are used for creating these technical agreements — terms and meanings are often misinterpreted. There are linguistic limitations and a general lack of definitions to adequately cover all the specific space concepts and activities using Space Law. Each Nation has its own agenda and vision concerning the development of space, including corporate, cultural and religious interest, adding to the complexity of governing space.

Although most large “space debris” is monitored with top priority for enabling reentry over uninhabited areas such as oceans and deserts — satellites or sections of rockets still have potential for an unexpected re-entry over an inhabited area.

Cuba Gives A New Meaning To A Cash Cow

Case Study: In November of 1960, the second stage of a U.S. – Thor rocket fell back to Earth and killed a cow grazing in Eastern Cuba. The final settlement required the U.S. Government to pay Cuba $2 million dollars in compensation — creating the world’s first “Cuban Cash Cow.”

Dramatic Rocket Launch Failures Associated With Space Exploration

American physicist, Dr. Robert H. Goddard is the father of modern rocket propulsion. Goddard’s published rocket research during the1920s and 1930s, is what German military scientist used to help develop the liquid fueled V2 rocket, which terrorized Europe towards the end of WWll. The V2 (technical name Aggregat-4 or A4) rocket was the first human made artifact to leave the Earth’s atmosphere and reach into space. This basic design of modern rockets has changed little in the 100 years since Goddard was awarded a U.S. patent in 1914 for a rocket using liquid fuel.

It’s estimated since the 1950s, of the nearly 8,000 rockets launched into space related missions, 8 percent of rocket launches ended in some-type of failure (2012 spacelaunchreport.com.) The resulting anomalies have cost the lives of hundreds of individuals, including; astronauts, cosmonauts and civilians, along with billions of dollars of property and payload losses.

Here’s an abbreviated list of eventful, dramatic and tragic events associated with rocket launches.

A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second

A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & the Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.

A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & the Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.

stage of the rocket & the Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.                      http://www.youtube.com/watch?v=zVeFkakURXM

Vanguard TV3, December 6, 1957 launched from Cape Canaveral, Florida (U.S.) was the first U.S. attempt at sending a satellite into orbit. A first event of its kind to use a live televised broadcast, which ended with stunned viewers witnessing Vanguard’s explosive failure. Unfortunately, this launch mission was not ready for prime-time and occurred as a reflex reaction to the Soviet Union’s surprise aerospace success of launching the world’s first satellite, Sputnik, on October 23, 1957. http://www.youtube.com/watch?v=zVeFkakURXM

Vostok rocket, March 18, 1980, launched from Plesetsk, Russia (formerly the world’s busiest spaceport). While being refueled the rocket exploded on the launch pad, killing 50, mostly young soldiers. (Source: New York Times article, published September 28, 1989) ⇒ http://www.nytimes.com/1989/09/28/world/1980-soviet-rocket-accident-killed-50.html

Challenger STS-51-L Space Shuttle disaster, January 28, 1986, launched from Kennedy Space Center (U.S.) marked the first U.S. in-flight fatalities. After only 73 seconds from lift-off, faulty O-ring seals failed, releasing hot gases from the solid propellant rocket booster (SRB), which led to a catastrophic failure. Seven crew members were lost, including Christy McAullife, selected by NASA’s Teacher in Space Program. McAullife was the first civilian to be trained as an astronaut — she would have been the first civilian to enter space, but tragically, the flight ended a short distance before reaching the edge of space. Recovery efforts for Challenger were the most expensive of any rocket launch disaster to date.   http://www.history.com/topics/challenger-disaster/videos/engineering-disasters—challenger

Long Mark 3B rocket launch, payload: American communication satellite, built by Space Systems Loral – February 14, 1996 in Xichang (China) – two seconds into launch, rocket pitched over just after clearing the launch tower and accelerated horizontally a few hundred feet off the ground, before hitting a hill 22 seconds into its flight. The rocket slammed into a hillside exploding in a fireball above a nearby town, it’s estimated at least 100 people died in the resulting aftermath. This event was most likely the worst rocket launch disaster to date, due to the massive loss of human life. Disaster at Xichang | History of Flight | Air & Space Magazine  ⇒ http://www.airspacemag.com/history-of-flight/disaster-at-xichang-2873673/?c=y%3Fno-ist  video of the rocket launch disaster https://www.youtube.com/watch?v=8_EnrVf9u8s

Antares rocket launch explosion with firebrands cascading from solid propellant — NASA photo

Antares rocket launch explosion with ‘firebrands’ cascading from solid propellant — NASA photo

Delta 2, rocket launch – January 1997, Cape Canaveral (U.S.) – this rocket carried a new GPS satellite and ends in a spectacular explosion. Video link included to show examples of worst case scenario of a rocket exploding only seconds after launch (note brightly burning rocket propellant cascading to the ground is known as “firebrand”.) The short video has an interview with Chester Whitehair, former VP of Space Launch Operations Aerospace Corporation, who describes how the burning debris and toxic hydrochloric gas cloud fell into the Atlantic Ocean from the rocket explosion. Rocket launch sites and Spaceports are geographically chosen to mitigate rocket launch accidents. US rocket disasters    http://www.youtube.com/watch?v=Y4-Idv6HnH8

Titan 4, rocket launch – August 1998, Cape Canaveral (U.S.) the last launch of a Titan rocket – with a military, top-secret satellite payload, was the most expensive rocket disaster to date – estimated loss of $ 1.3 Billion dollars.                                                        http://www.military.com/video/explosions/blast/titan-iv-explosion-at-cape-canaveral/1137853205001/

VLS-3 rocket, launch – August 2003, Alcantara (Brazil) – rocket exploded on the launch pad when the rocket booster was accidentally initiated during test 72 hours before its scheduled launch. Reports of at least 21 people were killed at the site.                               http://usatoday30.usatoday.com/news/world/2003-08-22-brazil-rocket_x.htmvideo of the rocket launch disaster ⇒ https://www.youtube.com/watch?v=8_EnrVf9u8s 

Rocket launch debris fields are color keyed in red & Links to space port's web sites included. (CLICK ON MAP TO ENLARGE) Quiz ??? - 1.) Do you see any similarities in the geographic locations used for these launch sites? 2.) What advantages do these locations have regarding "Space Law?" 3.) For most rocket launches, which site has the greatest geographic advantage & why? 4.) Which has the least advantage & why?

Rocket launch debris fields are color keyed in red & Links to space port’s web sites included. (CLICK ON MAP TO ENLARGE) Quiz ??? – 1.) Do you see any similarities in the geographic locations used for these launch sites? 2.) What advantages do these locations have regarding “Space Law?” 3.) For most rocket launches, which site has the greatest geographic advantage & why? 4.) Which has the least advantage & why?

Rocket launch debris fields are color keyed in red & Links to space port’s web sites included. (CLICK ON MAP TO ENLARGE) Quiz ??? – 1.) Do you see any similarities in the geographic locations used for these launch sites? 2.) What advantages do these locations have regarding “Space Law?” 3.) For most rocket launches, which site has the greatest geographic advantage & why? 4.) Which has the least advantage & why?
Location, location, location is a huge benefit for rocket launch sites.

If you zoom into the above World map with its rocket launch sites, you’ll notice they’re located in remote, uninhabited areas. Another feature most space ports share is their proximity to large bodies of water, which are located in an easterly direction (with the exception of the U.S. Vandenberg site.) Rockets are launched over oceans to minimize   the risk to people or property from catastrophic accidents, which includes falling launch fuel_tank_bpp_e82debris and toxic clouds of burnt fuel propellant. Liability from a launch vehicle is the main reason why all ships and aircraft are restricted from being in water anywhere near or underneath a rocket’s flight path. Rocket’s debris can contain highly toxic forms of unspent fuel and oxidizer, especially from solid propellant fuels.

The majority of rockets are launched in an easterly direction, due to the Earth’s easterly rotation. This procedure gives the rocket extra momentum to help escape the Earth’s gravitational pull. An exception for an east directional launch is a Vandenberg site in California. This site launches most of its rockets south for polar orbits, which is used by a majority of communication and mapping satellites.

Launching rockets closer to the equator gives a launch vehicle one more advantage — extra velocity is gained from the Earth’s rotation near its equator. At the equator, our planet spins at a speed of 1675 kph (1040 mph,) compared to a spot near the Arctic Circle, which moves at a slower, 736 kph (457 mph.) Even the smallest advantage gained in velocity means a rocket requires less fuel (13 percent less fuel required for equatorial launches) to reach “escape velocity.” This fuel savings translates to a lighter launch vehicle, making the critical transition of leaving Earth’s gravitational field quicker.

International space law is emerging from its infancy, attempting to clearly define itself from a nebulous amalgam of; agreements, amendments, codes, rules, regulations, jurisdictions,

Photo-illustration: David A Johanson — of space debris using a NASA photo of Skylab

Photo-illustration: David A Johanson — of space debris using a NASA photo of Skylab

treaties and non-binding measures. There exists today, enough legal framework for commercial interest to move cautiously towards developing outer space. However, with the unforeseen variables and dynamics of space activities, exceptions will be made & rules will be stretched, if not broken to accommodate necessity, justification or exculpation. ~

Part 1 of 2 editions – please check back soon for the conclusion of this essay.

The next edition of the Space Law series includes:

Potential Minefield Effects From Space Debris And The Regulatory Laws To Help Clean It Up.

Will Asteroid Mining Become The Next Big Gold Rush And What Laws Will Keep The Frontier Order?

Music video portal of rocket launches (nostalgia enriched content):

Boards of Canada – Dawn Chorus  http://www.youtube.com/watch?v=rfVfRWv7igg

Boards of Canada – Gemini – http://vimeo.com/68087306

Boards of Canada – Music is Math http://www.youtube.com/watch?v=F7bKe_Zgk4o

Links And Resources, For Space Law And Related Issues

http://definitions.uslegal.com/s/space-law/

http://www.thespacereview.com/article/2588/1

https://www.gwu.edu/~spi/assets/docs/AGuidetoSpaceLawTerms.pdf

http://digitalcommons.unl.edu/spacelaw/38/

 

The Space Review: International space law and commercial space activities: the rules do apply Outlook on Space Law Over the Next 30 Years: Essays Published for the 30th – Google Books “SPACE FOR DISPUTE SETTLEMENT MECHANISMS – DISPUTE RESOLUTION MECHANISM” by Frans G. von der Dunk Asteroid mining: US company looks to space for precious metal | Science | The Guardian Planetary Resources – The Asteroid Mining Company – News 5 of the Worst Space Launch Failures | Wired Science | Wired.com Orbital Debris: A Technical Assessment NASA Orbital Debris FAQs ‎orbitaldebris.jsc.nasa.gov/library/IAR_95_Document.pdf A Minefield in Earth Orbit: How Space Debris Is Spinning Out of Control [Interactive]: Scientific American SpaceX signs lease agreement at spaceport to test reusable rocket – latimes.com Earth’s rotation – Wikipedia, the free encyclopedia The Space Review: Spacecraft stats and insights Space Launch Report V-2 rocket – Wikipedia, the free encyclopedia Billionaire Paul Allen gets V-2 rocket for aviation museum near Seattle – Science Germany conducts first successful V-2 rocket test — History.com This Day in History — 10/3/1942

http://www.nbcnews.com/science/billionaire-paul-allen-gets-v-2-rocket-aviation-museum-near-1C9990063

WA Okang SatDshBP_e1103

 

 

 

 

 

[contact-form][contact-field label='Name' type='name' class="GINGER_SOFATWARE_correct">/][contact-field label='Email' type='email' class="GINGER_SOFATWARE_correct">/][contact-field label='Website' class="GINGER_SOFATWARE_correct">/][contact-field label='Comment' type='textarea' class="GINGER_SOFATWARE_correct">/][/contact-form]

 

Advertisements

Will The Next Jet Airliner You Fly Be Obsolete, And Ready for Early Retirement?

Boeing_PaineF_BPP_ah7069


Multimedia eLearning program authored by: David Anthony Johanson ©  – All written & graphic content on this site (unless noted) was produced by the author. Add: 2.0  For an alternative graphic format presentation, please visit: https://sciencetechtablet.wordpress.com/tag/commercial-jet-airliner-obsolescence/ 

This multimedia essay includes an eLearning program for secondary/post secondary education and community learning. Assessment tool: A quiz and answer key is located at the end of the program. Learning content covered: aerospace/airliner— aerospace engineering, avionics, economics & business, environmental footprint, financing, manufacturing, marketing, obsolescence management, technology. Learning concepts used: Applied Learning, Adult Learning, Competency-based Learning, Critical Thinking, Integrative Learning.Key: Words or phrases italicized are used to focus on essential concepts or terms for enhanced learning and retention.

[ Disclaimer: David Johanson is a former Boeing scientific photographer and currently has no stock holdings or a financial interest in: Boeing, Airbus or any other companies referenced in this program. Research in this article has been cross referenced using at least three sources, however, all perspectives and opinions represent only the viewpoints of the author.]

.
Like seeing a mirage in the distance, shimmering sunlight reflects off rows of metal fuselages densely packed in the summer light. A surreal scene of Boeing jet airliners dominates the view, while forming a metallic wall around sections of a regional airport.

Boeing_Paine_Field_747_ae3013Billions of dollars worth of jet airliners are now double parked around Paine Field, Snohomish County Airport, in Everett, Washington. “This development indicates the current success, Boeing is having at landing airliner orders and the result you’re seeing represents a record amount of aircraft production,”said Terrance Scott, a spokesman for Boeing Commercial Airplanes.

He said the Company is leasing this space from Paine Field so that planes can have the remaining work completed and be ready for delivery to their customers — also, this isn’t unique to Everett, but is happening at Boeing manufacturing facilities at Renton Field and at Boeing Field in Seattle.

“Boeing has always been a good neighbor and a fine customer for the airport, they are currently leasing areas to park their aircraft and the revenue generated is appreciated.” said Dave Waggoner, Airport Director at Snohomish County Airport — Paine Field.

Boeing_Paine_Field_BPP_ae7131
The global economy’s steady growth has increased passenger traffic, which puts pressure on the airlines to purchase new aircraft for satisfying demand. Continued drops in jet fuel prices benefits air travel industry profits, giving further incentives for fleet investments. Additionally, with historically low-interest rates, lending institutions find new opportunities in aviation financing, enabling expansion of corporate sales. However, financing for used planes is another matter. Cash is drying up for previously owned jetliners — which puts pressure to part-out, then scrap relatively newer-used aircraft. Boeing_Paine_Field_BPP_ae3009

Boeing_PaineF_BPP_ae7127

 

Could The New Normal Be Shorter Aircraft Service-Life For Airliner Fleets?

Recently, published reports noted a shift towards an assumed obsolescence and accelerated scraping of newer airliners — well before structural integrity or air worthiness becomes a problem, middle-aged aircraft are experiencing vulnerability to an early end-of-life. Clearly, accelerated scraping of newer aircraft is not due to any structural concerns, but rather, cyclical conditions of the industry. To appreciate these concerns a review of an airliner’s operational lifespan may help clarify some of the issues.
Boeing_Paine_Field_BPP_Ae3083Boeing_Paine_Field_BPP_Ae100Boeing_Paine_Field_BPP_ae3064

Aircraft manufactures use pressurization cycles to determine an airliner’s operational lifespan. A pressurizing cycle includes three distinct aircraft flight activities — takeoff, climbing until it reaches a cruise altitude and then landing. During this process, air is pumped into the fuselage to pressurize the cabin for passenger comfort. This repeated pressurization flexes or expands the fuselage — consequently stress is put on various connecting components, including fasteners and rivets — which helps to hold the structural integrity of the plane together. After a certain number of landing pressurization cycles, stress or metal fatigue can begin to develop, eventually causing small cracks around the fasteners. Pressurization/landing cycles mainly concern the life of an aircraft’s fuselage, wings and landing gear.

The interior of fuselage section, showing perpendicular rings, which are called frames.

The interior of fuselage section, showing perpendicular rings, which are called frames.


The interior of fuselage section, showing perpendicular rings, which are called frames.

Maintenance schedules and lifespan of jet engines are measured in the number of flight hours. Aircraft engines, followed by landing gear and then avionics are the most valuable components for part-out and dismantling specialist operations. Ultimately, engine condition is the major factor in an owner’s decision to part-out an aircraft.

.
For short flights, single or smaller double aisle craft are used to carry passengers, which may go through many landing or pressurization cycles for everyday operations. The more takeoffs and landings, means a shorter operational lifespan for the plane. On long overseas flights, wide body or jumbo jets such as 747s experience fewer landing cycles. These larger airliners, especially ones use for cargo operations can have longer lifespans of upwards of 20 or 30 years. In the U.S., the FAA requires an initial inspection on Boeing 737s, which have 30,000 takeoffs and landings using electromagnetic testing. Mandatory inspections are required for finding cracks in the fuselage or metal fasteners.

Dreamliner_BPP_e2121Boeing has a history of ‘over-engineering’ components of its aircraft, which is actually a good thing for ensuring passenger safety and for an extended service-life of the aircraft. Historical evidence of this conservative engineering practice is documented in WWII archival film footage of blown-apart B-17s returning from a mission and safely landing. There are more recent examples of Boeing commercial aircraft surviving dramatic inflight catastrophic failures, with most of the passengers and crew landing safely.

Photo-illustration of an aircraft end-of-life center (aircraft boneyard.)

Photo-illustration of an aircraft end-of-life center (aircraft boneyard.)

Compound Forces Working Against Long-Life-Cycle Aircraft

What are the current forces, which hasten the end-of-life of a commercial jet airliner? Recurring cycles or patterns of economic and technological events influences the commercial aircraft industry on a daily basis. Various ripple-effects of these cycles can quickly alter new and used aircraft asset valuation. Airline leasing companies have a major influence, in providing their customers with the aircraft assets they need. Unless the buying customer has solid credit, it’s doubtful they can secure financing for previously-owned airliners. Also, tax incentives exist for Airline companies to use depreciation right-offs by decommissioning all but the most advance aircraft assets. photo illustration

Maintenance requirements are a long-term, yet fluid, financial concern for a company’s airline fleet. The newer designed aircraft are manufactured with significantly fewer parts than previous models. Consequently, reduction in parts has an impact on reducing maintenance expenditures — including smaller service crews, hours spent on inspection and a reduction of overall repairs. Also, spare parts inventories for maintaining the aircraft’s optimum performance can substantially be reduced compared to an older aircraft. The cost savings benefits are compelling incentives for eliminating older, higher maintenance, aircraft assets.

Boeing_Flt_Line_BPP_bg0187As mentioned previously, the considerable reduction of parts used in manufacturing newer aircraft provides an immediate benefit of up to 20 percent weight reduction. Without compromising strength or aircraft structural integrity, the cost savings from less weight begins the day an airliner is put into service. Traditionally, fuel-efficiency is the “holy grail” used for selecting an aircraft — the amount of fuel-burn affects the daily operational cost of an airline company. After a decade of service an older airliner reaches mid-life, it may require upgraded and modification conversions to the aircraft’s wings (winglets) or need new fuel-efficient jet engines. However, these conversions reach a threshold of diminishing returns from such investments. As a result, keeping an older aircraft competitive with newer models may not pay off at a certain point. That’s when permanent retirement and parting-out the airliner begins to make economic sense and the aircraft’s end-of-life management begins.Boeing_Paine_Field_BPP_ae3134

Inevitable Problems Facing Aircraft Electronic Systems (Avionics) Obsolescence

The most perplexing problem facing all commercial aircraft is how to ensure its critical avionics systems continue to evolve and stay up-to-date. Avionics provides the central nervous system or a central processing unit (CPU) framework for a commercial aircraft. It’s a marvelous matrix of advanced electronic systems technology, which constantly communicates with itself, the pilots and the outside world. More so than any other components making up an aircraft’s technological system, its management and functionality duties are beyond comparison. Each year avionics components physically contract in size, yet they expand immensely in functionality and system management. 

Cell_Phone_Tlk_BPP_et82Here’s an example to help clarify this dichotomy of physical contraction and expansion of technical functionality. Your smartphone can be used as a basic representational model for avionics obsolescence. The phone you’re holding in your hand has a superior mobile graphics processor and sheer number-crunching power advantage over IBM’s Deep Blue supercomputer of the late 1990s. Yet, you can hold your phone in hand, compared to Deep Blue, which was the size of a large refrigerator. However, advanced your smartphone is today, a year from now it’ll be obsolete and two years from now… a quaint antique.  If you grabbed your smartphone and considered the example, you just experienced Moore’s law of observation — ‘over the history of computing hardware, the number of transistors in a dense integrated circuit doubles approximately every two years.Man_micro_chip_BPP_et169

Now, imagine trying to update a complex system such as an airliner’s avionics bay, in five-years, 10-years or 15-years. The installation and the majority of electronic systems are not made by the Aircraft’s original equipment manufacturer Mars Frontier series(OEM) such as Boeing or Airbus. Moreover, the vendors or suppliers 10 or 15-years from now who were the OEM, may be out of business.  In the meantime, new replacement components may have to substitute the obsolete equipment. However, the aircraft industry is highly regulated by government agencies, which require strict certification of equipment modifications. As a result of these constraints, aircraft manufacturers such as Boeing, developed obsolescence management strategies to help mitigate these ongoing concerns. But there are always unforeseen obstacles and many moving parts to coordinate before the necessary electronic components are available when needed. Clear, transparent communication is necessary between internal engineering and purchasing departments. Successful collaboration at all levels can present major challenges, especially if the objectives and timetables are not each group’s priority.

So aircraft avionics are the vulnerable underbelly of airliner obsolescence — with financial consequences associated with accelerated, technology — necessitating complex and expensive electronic upgrades.

Boeing_747_PF_BPP_a3011

Airspace Navigation Service Providers (ANSP), which includes the FAA and the European counterpart EASA — have established new mandate requirements for avionic component upgrades. The purpose of this technology is for enhanced data link digital communication, which interacts instantly with aircraft Flight Management Systems (FMS). These requirements include, Automatic Dependent Surveillance-Broadcast (ADS-B), Controller-Pilot Data Link (CPDLC) and the Future Air Navigation System (FANS) enables text messaging and global position through satellite communications. The new civil aviation mandates are part of the next generation air traffic computer technology called NextGen, which represents air traffic infrastructure’s future for the next 10 to 15 years.

Used Aircraft Components, Harvested For Premium Returns, Is The Retired Airliners Last Call In Service Before Its Final Destination.

Perhaps aircraft boneyards are flying under the radar as virtual gold mines, as refurbished parts are easily sold at market value. The savings of buying used, over new aircraft parts is incentive for expanding the market. Engines, landing gear and avionics are the most expensive components of an aircraft. These prized components are a highly valued commodity and are quickly snapped up. Specialized systems are not manufactured by companies such as Boeing or Airbus, but by outside OEM. Parts sold brand new by the manufacturer are considerably more expensive than buying used.

Money_int _BPP_a223Next Generation aircraft such as the Boeing 737-600 and even a 737-800, which was reported to have had a hard-landing, reached their end-of-life as scrap.  Also, Airbus has had similar, newer single-aisle aircraft models reached their final destination in the aviation boneyard.  Aircraft Fleet receivable Association (AFRA) estimates 600 commercial jet airliners are scrapped yearly. By 2023 it’s estimated the number of commercial airliners scrapped will reach 1000 per-year.

Efforts Of The Aviation Industry To Leave A Smaller Environmental Footprint.

In 2008, the Boeing Company reached out to Airbus in collaboration, with the goal to vastly improve aircraft recycling technology. Airbus estimates they are recycling 85 percent of the entire aircraft, the remaining cabin interior amounted to 15 percent and was the only materials added to landfills.     Earth Day 2010

The best takeaway from the issues surrounding accelerated airliner service-life is that less fuel is consumed by the newer fleets. As older, less efficient aircraft are replaced — a 20 percent reduction in fuel emissions will not enter the atmosphere from the next generation aircraft replacements. If the world’s commercial airline manufactures continue to devote more effort towards efficient recycling of past generation aircraft, we can look forward to clearer skies ahead.         ~
photo illustration

*
Special thanks to The Future of Flight Museum, for allowing photos to be taken from their excellent observation deck.

http://www.futureofflight.org                       A surprise appearance of a Boeing Dreamlifter has photographers scrambling to be ready.

 

Aerial view of Paine Field Airport looking north.

Aerial view of Paine Field Airport looking north.

Airliner Obsolescence Quiz    (Read the entire question before answering.)

1. ) What three economic incentives are currently influencing airlines to purchase new aircraft for satisfying travel demand? ______________________________________ _________________________________ & _________________________________
2. ) (True or False) Structural integrity or air worthiness of current generation airliners is the main issue why these aircraft are being retired early. _______ If you answered false, give at least one other reason why this is occurring. ____________________________ _____________________________________________________________________
3. ) Aircraft manufactures use, what type of  ___________ cycles to determine an airliner’s operational lifespan?
4. ) Name the three distinct aircraft flight activities used to determine an airliner’s operation lifespan? _________________________ __________________________ ____________________________________________
5. ) Maintenance schedules and lifespan of jet engines are measured in the ________________ hours.
6. ) Aircraft _________ followed by ____________ and then ___________ are the most valuable components for the part-out and dismantling specialist operations. Fill in the blanks above by selecting the proper order of component value, using the following list: (bulk heads) (wire bundles) (avionics) (engines) (landing gear)
7. ) Selecting from the choices listed below, which aircraft will typically experience more pressurization cycles and why? A or B ____________  A. Jumbo jet (larger, multi isle aircraft) which is used for longer, overseas flights. B. Smaller, single isle jet airliners, which are used more for shorter, domestic flights.  Now explain why? ______________________________________________________________________ ______________________________________________________________________    8. ) Multi-isle airliners or jumbo jets, used for longer international flights or for cargo operations can have life cycles of upwards of ____ – ____ years. Select the best match from these sets: 5 − 15, 10 − 15, 20 − 30, 30 − 40 years. 

9. ) Explain why a larger commercial jet airliner, which flies longer over-sea routes, would have a longer operational life than a smaller aircraft, which is used on much shorter routes? __________________________________________________________________ ________________________________________________________________________
10. ) What procedure is required by the FAA for a Boeing 737 airliner, which completes 30,000 takeoffs and landings? _______________________________________________ ________________________________________________________________________
11. ) The newer designed aircraft are manufactured with significantly fewer parts than previous models, list at least two reasons why this is an advantage and would make older aircraft obsolete? _______________________________________________________ ______________________________________________________________________
12. ) What aircraft component traditionally has been considered the “holy grail” used by the airline industry for selecting an aircraft? _____________________________________
13. ) When permanent retirement and parting-out the of an airliner begins to make economic sense, what form of management begins for that aircraft? ____________________ Select one of the following: end-of-days, end-of-life, retirement cycle, recycle phase.
14. ) What critical system of an airliner is considered its “central nervous system” or CPU for overall control of the aircraft? ________________________________ Give at least two reasons why this system contributes to a jet becoming obsolete? ________________________________________________________________________ ________________________________________________________________________
15. ) Approximately how many aircraft are permanently retired or scrapped in a year? __________________ By 2023, how many aircraft are expected to be scrapped? _____________________
16. ) Regarding commercial aircraft recycling technology, what percentage does Airbus estimate it is recycling of the entire airliner ___ 40 %, 65 %, 75 % or 85 % What percent of the aircraft is not recyclable ___ 60 %, 50 %, 25 %, or 15 %  What part of the airliner is not recyclable ____________________ and where does it end up? _______________
Answer key is located at the very bottom, after program sources & related links

*
Sources & Related Subject Matter Links

This link shows live air traffic anywhere in the world. View how congested the sky’s are over the world’s busiest airports.

http://www.flightradar24.com/47.79,-122.31/7

Aircraft Bluebook – Used for aviation asset valuation

http://www.boeing.com/assets/pdf/commercial/aircraft_economic_life_whitepaper.pdf

http://marketline.squarespace.com
http://www.boeing.com/boeing/companyoffices/aboutus/brief/commercial.page

http://www.airbus.com/innovation/eco-efficiency/aircraft-end-of-life/

http://www.airspacemag.com/need-to-know/what-determines-an-airplanes-lifespan-29533465/?no-ist

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/ObsolescenceFinalReport.pdf

http://aviationweek.com/awin/nextgen-obsolescence-driving-avionics-refurbs

http://www.theguardian.com/business/2013/jun/11/boeing-commercial-planes-double-asia-pacific

http://www.airliners.net/aviation-forums/general_aviation/read.main/5740876/

http://avolon.aero/wp/wp-content/uploads/2014/06/Aircraft_Retirement_Trends_Outlook_Sep_2012.pdf

Article & photos on U.S. aircraft boneyards

http://www.johnweeks.com/boneyard/

http://www.dailymail.co.uk/sciencetech/article-2336804/The-great-aviation-graveyard-New-aerial-images-hundreds-planes-left-die-American-deserts.html

Article, photos & interactive map of U.S. aircraft boneyards

http://www.airplaneboneyards.com/commercial-aviation-airplane-boneyards-storage.htm

Excellent aerial video of Airplane Graveyard (Mojave Airport, California)

http://www.youtube.com/watch?v=6RjaoR7Zk2s

 

Airliner Obsolescence Quiz Answer Key

1.  ) Satisfying increased travel demand   Fuel cost savings & Historically, low-interest rates for financing new aircraft

2.  ) True    Newer aircraft are replacing airworthy, older aircraft due to much less operating cost, including fuel savings and maintenance issues.

3.  ) Pressurization or Landing cycles

4.  ) Takeoff    Climbing to cruise altitude    Landing

5.  ) Number of flight hours

6. ) Engines  landing  gear avionics

7. )       Shorter service routes typically involve more landing and takeoffs as the airliner satisfies domestic travel demand

8.  )   2030 

9.  )  An airliner flying overseas route would most likely have fewer takeoffs and landings, due to the longer flight time required to reach its destination

10.)  Electromagnetic testing for finding cracks in the fuselage or related components

11.)   Fewer parts can result in an airliner weighing up to 20 percent less than older models, which can correlate to the same percentage of fuel savings. The maintenance cost is substantially lower allowing for more savings over older aircraft with more component parts.  

12.)  Fuel-efficiency

13.)  End-of-life

14.)  Avionics   electronic components used for avionics may not be available or upgradeable due to obsolescence   upgrading obsolete avionics may require expensive redesign

15. )   Up to 600   1000

16. ) 85 %   15 %   Cabin interiors   Landfills

[contact-form][contact-field label='Name' type='name' class="GINGER_SOFATWARE_correct">/][contact-field label='Email' type='email' class="GINGER_SOFATWARE_correct">/][contact-field label='Website' class="GINGER_SOFATWARE_correct">/][contact-field label='Comment' type='textarea' class="GINGER_SOFATWARE_correct">/][/contact-form]