Is Space Law Really That Far Over Your Head?

Sky_look_ BPP_ae208
  Multimedia Essay By: David Johanson Vasquez © All Rights  

.

 Part 1 of 2 Editions  – To view an alternative graphic format see: 
Science Tech Tablet | A site dedicated to technology, science and learning.
.

Look upwards toward the sky on the next clear day or cloudless night and behold the new legal frontier unfold before your eyes. A mere 65 miles above sea-level, our atmosphere and gravity dwindles into space, where satellites begin to glide silently over Earth’s thin atmosphere. Only a fraction of human history has passed since man-made satellites were far and few between — but that time has since slipped away, replaced by an ever tightening metal jacket of used and disregarded manufactured, celestial artifacts. Almost at the start of the space race, “Space Law” was launched and it’s had an uphill battle to catchup with the unforeseen consequences of humanity’s reach for the heavens.

The German V-2 rocket was a sophisticated liquid propellant rocket, which first entered outer-space in 1942.
The German V-2 rocket was a sophisticated liquid propellant rocket, which first entered outer-space in 1942.

At times, defining what Space Law is or does is a nebulous task. This new form of law can be so abstract and full of contradictions that it resembles an art, rather than a science. Like creating a massive sculpture, it’s often a process which involves slow progress — developing over time through stages of careful analysis and discernment. Space Law will continue to transform itself by maturing, developing refinements and taking on new dimensions as needed.

There are basically three forms of law, which make up Space Law: 1.) Regulatory Law – sets standards which must be met for securing authority to launch a rocket vehicle.  2.) Tort Law – concerns damages which occur as a result of debris from rocket launch accidents or space and terrestrial impacts from orbital debris. 3.) Common Law – could be applied to circumstances relating to a private entity’s negligence, which causes damage from its orbital debris.

Back To Rocket Science Basics.

The basic blueprint for all modern rockets used in today’s space programs originated from the American physicist, Dr. Robert Goddard, who is considered the father of modern rockets. By the late 1930s, Goddard had tested a liquid propellant rocket — the rocket used vanes or fins near the thrust nozzle to help initial launch guidance and a gyro control for flight over the desert in New Mexico. The German scientist, Wernher von Braun’s V-2 rocket borrowed Goddard’s basic design for refinement and increased its scale for later mass productionUsed by the German military towards the end of World War II, V-2 or Aggreat-4 ( A-4) was successfully launched in 1942, making it the first human made object to enter outer space.

The V-2 was a sophisticated liquid propellant, single stage rocket, which had a top speed of 5,760 km/h (3,580 mph) and could reach an altitude of 206km (128 miles.) At the end of the war, the Americans, British and Russians took possession of all remaining V-2 rockets, along with German engineers, technicians and scientists working on the program. A high priority was placed on researching its capabilities, re-engineering and developing it for national security.

— The Paul Allen Flying Heritage Museum, located at Paine Field, Everett, WA, recently added an authentic V2 rocket for display.

American scientists James Van Allen and Sydney Chapman were able to convince the U.S. Government of the scientific value for launching rockets carrying satellites into space. A scientific effort in the early 1950s was begun, with the plan to launch American satellites by 1957 or 1958. The Russians surprised the World by launching the first satellite into orbit in 1957 named Sputnik.

First photograph from space & of the Earth, from a V-2 rocket in 1946 byU.S scientist.
First photograph from space & of the Earth in 1946, from a V-2 rocket at an altitude of 65 miles, by U.S. scientist. Photo: courtesy of U.S. Army
A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida.
A modified V-2 rocket being launch on July 24, 1950. General Electric Company was prime contractor for the launch, Douglas Aircraft Company manufactured the second stage of the rocket & the Jet Propulsion Laboratory (JPL) had major rocket design roles & test instrumentation. This was the first launch from Cape Canaveral, Florida. Photo: courtesy of NASA/U.S. Army
Most major space portals or rocket launch site are located next to oceans or remote location to limit legal liability in case of failed launch. It's estimated 10 % of rocket launches end in failure. Photo illustration: David Johanson Vasquez ©
Most major space portals and rocket launch sites are located next to oceans or remote locations to limit legal liability in case of a failed launch. It’s estimated 8 % of rocket launches end in failure. Photo illustration: David Johanson Vasquez ©
What Goes Up Must Come Down.

Rocket launch programs have always had to contend with Newton’s law of gravity, today, these programs face new challenges with liability laws, to protect individuals and property from unexpected accidents.

Case Study:  The first time a major issue of liability occurred was in 1962, on a street within Manitowoc, Wisconsin. Apparently, a three-kilogram metal artifact from the Russian’s 1960, Sputnik 4 satellite launch, reentered the atmosphere unannounced, over an unsuspecting Midwest. The Russian’s denied it was theirs, fearing liability under international law. This event, helped set in motion, the 1963 Declaration on Legal Principals Governing the Activities of State in the Exploration and Use of Outer Space. As an international agreement, it puts forth the responsibility to the State which launches or engages the launching of objects into space as internationally responsible for damages caused on Earth. In 1967, the agreement was slightly modified and was titled “Outer Space Treaty 1967.” 

A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law sets the liability for damages caused by the space debris to the nation or agency responsible responsible to its original rocket launch.
A photo illustration of space debris from a low Earth orbit reentering the atmosphere over a city. Earth has water covering 70% of its surface — when attempts fail to guide space debris towards open oceans, the chance for these falling objects to hit a populated area increase. Space Law sets the liability for damages caused by the space debris to the nation or agency responsible for its original rocket launch.

By 1984, the United Nations General Assembly, had adopted five sets of legal principles governing international law and cooperation in space activities. The principles include the following agreements and conventions.“Outer Space Treaty” – the use of Outer Space, including the Moon and other Celestial Bodies (1967 – resolution 2222.) “Rescue Agreement” – the  agreement to rescue Astronauts/Cosmonauts, the Return of Astronauts/Cosmonauts and the Return of Objects Launched into Space (1968 – resolution 2345.) “Liability Convention” – the Convention on International Liability for Damaged Caused by Space Objects (1972 – resolution 2777.) “Registration Convention” – the registration of  Objects Launched into Outer Space (1975 – resolution 3235.) “Moon Agreement” – the agreement Governing the Activities of  States on the Moon and Other Celestial Bodies (1979 – resolution 34/68.)

Because so many languages are involved with these international agreements, terms used in Space Law, often gets lost in translation. There are linguistic limitations and general lack of necessary definitions to adequately cover specific space concepts and activities using Space Law. Each Nation has its own agenda and vision concerning the development of space — then throw in multinational companies and things get really diluted when it comes to working out agreements regarding laws governing space.

Although most large "space junk" is monitored and efforts are made for reentry over uninhabited areas, satellites or sections of rockets can potentially fall anywhere.
Although most large “space debris” is monitored and great efforts are made for reentry to take place over uninhabited areas – satellites or sections of rockets can potentially fall anywhere.
Cuba Gives A New Meaning To A Cash Cow.

Case Study:  In November of 1960, the second stage of a U.S. A Thor rocket fell back to Earth and killed a cow grazing in Eastern Cuba. The final settlement required the U.S. Government to pay Cuba $2 million dollars in compensation — creating the world’s first “Cuban Cash Cow.”

Dramatic Rocket Launch Failures Associated With Space Exploration.

It’s estimated since the 1950s, of the nearly 8,000 rockets launched for space related missions, 8 % of rocket launches ended in failure (2012 spacelaunchreport.com.) The resulting anomalies have cost the lives of hundreds of astronauts, cosmonauts and civilians along with billions of dollars in losses. Here’s an abbreviated list of dramatic and tragic events associated with rocket launch failures. WA Okang SatDshBP_e1103

Vanguard TV3, December 9, 1957 launched from Cape Canaveral, Florida (U.S.) was the first U.S. attempt at sending a satellite into orbit.  A first event of its kind to use a live televised broadcast, which ended by witnessing Vanguard’s explosive failure. Unfortunately this launch was a rushed reaction to the Soviet Union’s surprise success of launching the world’s first satellite, Sputnik, on October 23, 1957.

Vostok rocket, March 18, 1980, launched from Plesetsk, Russia (the world’s busiest spaceport). While being refueled the rocket exploded on the launch pad, killing 50, mostly young soldiers. (Source: New York Times article, published September 28, 1989)

Challenger STS-51-L Space Shuttle disaster, January 28, 1986, launched from Kennedy Space Center (U.S.) marked the first U.S. in-flight fatalities. After only 73 seconds from lift-off, faulty O-ring seals failed, releasing hot gases from the solid propellant rocket booster (SRB), which led to a catastrophic failure. Seven crew members were lost, including Christy McAullife,  selected by NASA’s Teacher in Space Program. McAullife was the first civilian to be trained as an astronaut — she would have been the first civilian to enter space, but tragically, the flight ended a short distance before reaching the edge of space. Recovery efforts for Challenger were the most expensive of any rocket launch disaster to date.

Long Mark 3B rocket launch, payload: American communication satellite, built by Space Systems Loral – February 14, 1996 in Xichang (China) – two seconds into launch, rocket pitched over just after clearing the launch tower and accelerated  horizontally a few hundred feet off the ground, before hitting a hill 22 seconds into its flight. The rocket slammed into a hillside exploding in a fireball above a nearby town, it’s estimated at least 100 people died in the resulting aftermath. Click on this link to read the complete eyewitness story. →    Disaster at Xichang | History of Flight | Air & Space Magazine

Delta 2, rocket launch – January 1997, Cape Canaveral (U.S.) – this rocket carried a new GPS satellite and ends in a spectacular explosion. Video link included to show examples of  worst case scenario of a rocket exploding only seconds after launch (note brightly burning rocket propellant cascading to the ground is known as “firebrand”.)  The short video has an interview with Chester Whitehair, former VP of Space Launch Operations Aerospace Corporation, who describes how the burning debris and toxic hydrochloric gas cloud fell into the Atlantic Ocean from the rocket explosion. Rocket launch sites and Spaceports are geographically chosen to mitigate rocket launch accidents . Click on this video link to see the rocket mishap. →    US rocket disasters – YouTube

Titan 4, rocket launch – August 1998, Cape Canaveral (U.S.) the last launch of a Titan rocket – with a military, top-secret satellite payload, was the most expensive rocket disaster to date – estimated loss of $ 1.3 Billion dollars.

VLS-3 rocket, launch  – August 2003, Alcantara (Brazil) – rocket exploded on the launch pad when the rocket booster was accidentally initiated during test 72 hours before its scheduled launch. Reports of at least 21 people were killed at the site.

World_spaceport-InterAf_Map

Global location, GPS coordinates & rocket debris fields of major Spaceports & launch sites. ( Click on map to enlarge)
Quiz ??? – Do you see any similarities in the geographic locations used for these launch sites? What advantages do these locations have regarding “Space Law?” For most rocket launches, which site has the greatest geographic advantage & why; which has the least advantage & why?
Location, Location, Location Benefits Rocket Launch Sites.

If you zoom into the above World map with its rocket launch sites, you’ll notice all the locations gravitate toward remote regions. Another feature most Spaceports share is large bodies of water located to the east, with the exception of the U.S. Vandenberg site. Less likely hood of people or property being harmed by a rocket which could experience a catastrophic failure is why oceans make a great safety barrier.  The legal liability for a launch vehicle is why all ships and aircraft are restricted from being anywhere near a rocket’s flight path. The rocket debris fields are marked with red highlights, this fallen debris is a highly toxic form of unspent fuel and oxidizers.

Most rockets are launched towards an easterly direction due to the Earth’s eastern rotation, which aids the rocket with extra momentum. An exception for an east directional launch is Vandenberg site in California, which launches most of its rockets south for polar orbits used by communication and mapping satellites.

Launching rockets closer to the equator gives a launch vehicle one more advantage — extra velocity gained from the Earth’s rotation near its equator. At the equator, our planet spins at a speed of 1675 kph (1040 mph,) compared to a spot near the Arctic Circle, which moves at a slower, 736 kph (457 mph.) Even the smallest advantage gained in velocity means a rocket requires less fuel to reach “escape velocity.” This fuel savings translates to a lighter launch vehicle, making the critical transition of leaving Earth’s gravitational field quicker.

The next edition of the Space Law series includes:
Potential Minefield Effects From Space Debris And The Regulatory Laws To Help Clean It Up.
Will Asteroid Mining Become The Next Big Gold Rush And What Laws Will Keep The Frontier Order?
Links And Resources For Space Law.

.

International space law is emerging from its infancy, attempting to more clearly define itself from a nebulous amalgam of; agreements, amendments, codes, rules, regulations, jurisdictions, treaties and non-binding measures. There exists today, enough legal framework for commercial interest to move cautiously towards developing outer space. However, with the unforeseen variables & dynamics of space activities, exceptions will be made and rules will be stretched, if not broken to accommodate necessity, justification or exculpation. ~

Surprise space mission featured videos: Click → Boards of Canada – Dawn Chorus – YouTube   

→     Boards of Canada – Music is Math (HD)

→     Boards of Canada – Gemini – Fan Video on Vimeo
WA Okang SatDshBP_e1103
Links And Resources For Space Law.

The Space Review: International space law and commercial space activities: the rules do apply

Outlook on Space Law Over the Next 30 Years: Essays Published for the 30th … – Google Books

“SPACE FOR DISPUTE SETTLEMENT MECHANISMS – DISPUTE RESOLUTION MECHANISM” by Frans G. von der Dunk

Asteroid mining: US company looks to space for precious metal | Science | The Guardian

Planetary Resources – The Asteroid Mining Company – News

5 of the Worst Space Launch Failures | Wired Science | Wired.com

Orbital Debris: A Technical Assessment

NASA Orbital Debris FAQs

‎orbitaldebris.jsc.nasa.gov/library/IAR_95_Document.pdf

A Minefield in Earth Orbit: How Space Debris Is Spinning Out of Control [Interactive]: Scientific American

SpaceX signs lease agreement at spaceport to test reusable rocket – latimes.com

Earth’s rotation – Wikipedia, the free encyclopedia

The Space Review: Spacecraft stats and insights

Space Launch Report

V-2 rocket – Wikipedia, the free encyclopedia

Billionaire Paul Allen gets V-2 rocket for aviation museum near Seattle – Science

Germany conducts first successful V-2 rocket test — History.com This Day in History — 10/3/1942

Part 1 of 2 editions – please check back soon for the conclusion of this essay. 
Photo illustration by: David Johanson Vasquez, using a NASA photo of Skylab.

Photo illustration of space debris by: David Johanson Vasquez, using a NASA photo of Skylab.

http://www.youtube.com/watch?v=nG9LUSf_qK8 

 WA Okang SatDshBP_e1103
Advertisements

Blinded By Light, In The Middle Of Night

 
Multimedia eLearning program by: David A. Johanson © All Rights  — Second Edition

The author is a multimedia specialist, CTE instructor and a former Boeing scientific photographer. For an alternative formatted view of this program, please visit — www.ScienceTechTablet.wordpress.com

 

My photo wingman, Rick Wong and I headed into the heart of darkness in a quest for the Perseid meteor showers. Mount Rainier National Park, was our destination to use its iconic landmark for framing an infinite field of stars—far from the glare of city lights. Traveling at night in Rick’s new hybrid Ford Fusion, equipped with “information technology”—voice navigation, made it easy finding the park without using a map.

Arriving at our location, luminous stars lit up the night as expected, but we were surprised by some uninvited competition, which nearly stole the show.

A stunning view of Mount Rainier reflected in Reflection Lake, with the summer stars overhead. The pink and orange glow on the left side of the mountain is light pollution emitted from the City of Tacoma, approximately 65 miles northwest.

We found an ideal location above Reflection Lake to begin our photo shoot, with one of the Cascade Mountain’s most famous stratovolcano in the background. An unexpected warm light was glowing behind Mount Rainier, which I reasoned, was a faint remnant from the earlier sunset. However, the sun had set at least four hours earlier, so it couldn’t be the source of the illumination. Rick suggested “its light coming from the City of Tacoma,” located about 65 miles away. During a 20-second long exposures used to take an image of the snow-capped mountain, I began thinking about the effects caused by light pollution.
With a bright moon rising, we worked fast to keep up with the changing light, until its intensity eventually overpowered the stars.

Just now, the moon was rising higher into the night sky, it too was causing us to shift focus on what to photograph. Like a giant diffuse reflector, the moon reflected soft, filtered light onto a previously dark, formless landscape. Moonlight was beginning to compete with the canopy of stars’ brilliance, partially masking crystal clear views of the Milky Way, along with some meteor sightings. So being photo opportunist, we used the moonlight to illuminate shadow-detail on Rainier’s south face.

Like some sorcerer conjuring an intense cauldron of red light, the photographer adjusts his digital settings before Mount Rainier and her crown of stars above.

A Peaceful Paradise Lost                                                                                             There’s a tranquil feeling while in the process of taking long exposures at night; it’s normally quiet and not many visual distractions overwhelm the senses or interrupt your focus. I personally enjoy these rare opportunities of solitude, to visualize an image, using a minimal, Zen like perspective.

 

When a distraction, like a car suddenly rounding a corner occurs, it’s often an annoyance, which takes you out of the moment. My moment was taken by clusters of cars, with glaring lights as they came around a turn… just as the moon illuminated the mountain, as it was reflected onto a perfectly still lake.. Their headlights flooded the calm mirror-like water and stands of old growth trees beyond with glaring intensity— as I used my hands in an attempt to shield the lens from light flare. Finally, the cars diapered into the darkness with no more approaching vehicles until dawn.

Photo-illustration of micro light sources, which can cause light pollution by unintended spill-light.

Moving above the lake to find new angles for interesting compositions, I took notice of something not seen before. Lights of various colors were coming from photographers bellow me, created by their digital camera’s preview monitors and infrared sensors for auto focusing. With the low light-sensitive Nikon cameras I was using, these multicolored monitor lights, appeared like a bright flare on the long exposure images. Now, I had one more unwelcome light source to avoid, which required strategic timing in the photo’s exposures to minimize glare.

Again, my thoughts returned to the issues of light pollution. Recalling the time back home, when I attempted to photograph some constellations at night, only to have a neighbor’s motion sensor flood light, overwhelmed the backyard with brightness. The piercing light  forced me to find the last remaining, isolated shadowed corner of the yard.

My reminiscing was cut short by a distant, but bright, pinpoint of light from bellow Mount Rainier’s summit. Flashlights from mountain climbers near Camp Muir shined bright—like lighthouse beacons from the semi darkened rocks and glacier fields on the mountain. Even the faintest light can shine bright at night as was noted during World War II, when warships were forbidden from having any exterior lights on at night — including a lit cigarette, which posed a risk of being spotted from great distances by enemy submarines.

Lights from mountain climbers on the approach to the summit of Mount Ranier.

Encountering the Universe’s Brilliance                                                                       The improper, overuse of outdoor lighting has erased one of our basic and most powerful human experiences—encountering the universe’s brilliance with its galaxies and billions of stars shining in the night sky! Making visual contact with our own galaxy, the Milky Way, is one of the greatest shows seen from Earth.

 

In less than a century of civilization’s reliance on electric technology: two-thirds of the U.S., half of Europe and a fifth of people in the world—now live where they cannot see the Milky Way with the unaided eye. You can appreciate how we lost our stellar view by seeing aerial photos taken from orbiting spacecraft and the International Space Station. These startling images taken of the Earth at night, reveal a man-made galaxy of artificial light, which cancels out much of the real one in the sky above.

.

Some years back, I was a part-owner in a small recreational ranch, in Eastern Washington’s, Okanogan County. Brining friends over from Seattle, it was often nighttime when we arrived. The instant of exiting the cars, was a startling event as the Milky Way’s intensity of light overwhelmed your senses. The “ranch” was remotely located, at about 5,000 feet in the mountains, near the Canadian border and 30-miles from the closest town. Days would go by where we didn’t see a car or even hear a small airplane go overhead… it was one of the most refreshing experiences of my life, to perceive nothing except wind going through trees and seeing only starlight at night for hours at a time.

Image courtesy of NASA

A television interview with the director of a major observatory in Southern California recounted when Los Angeles had its last electrical blackout —people were calling 911 and his observatory, with reports of strange, bright objects in the night sky. Actually, what the callers were seeing for the first time, was the Milky Way’s canopy of shining stars.

   

Image courtesy of NASA.

Besides forfeiting a life inspiring, wondrous view of the cosmos, there’s tangible losses associated with light pollution. Conservative estimates are—30 % of U.S. outdoor lighting is pointed skyward in the wrong direction, which wastes billions of dollars of electricity. The unnecessary practice of lighting clouds, burns more than 6 million tons of coal, which adds: harmful greenhouse gas emissions, along with toxic chemicals into our atmosphere and water.

Further scientific studies indicate wildlife is suffering the ill effects of excessive urban lighting. The City of Chicago has taken measures to turn off or dim its high-rise lighting to enable migrating birds to continue normal migration patterns. An increase in species of insects attracted to light along with rodents, which are drawn towards bright city lighting, is a growing concern to many scientists.

Heavy equipment product shots never look quite this good. Scheduled improvements to the viewing area above Reflection Lake, had some equipment, taking a nap, before going to work when the sun came up.

Education Is the Solution to Light Pollution                                                                    The reason light pollution continues to expand is, we have grown accustomed to its seemingly benign presence. After all, probably no one can point to a single case of a person killed from overexposure to light pollution. However, there is a growing correlation of health risks associated with overexposure from artificial light. Some of the main symptoms include, physical fatigue and damage to eyesight. This lighting health risk was recognized in 2009, when the American Medical Association officially established a policy, which supports the control of light pollution.

.

Municipal lighting codes are beginning to help define and eliminate unnecessary light pollution. Lighting enforcement can create a more pleasing environment, by reducing excessive urban lighting, which causes fatigue from glare and cuts down on unnecessary electric utility cost. Redirecting outdoor lighting away from the sky where it is needlessly wasted is a simple and easy solution.

Installing motion detector security lights are another efficient and productive mitigation strategy. For security purpose, a light, which is triggered by motion is much more effective for crime prevention than a continuous floodlight. Motion detector lights have a clear advantage of focussing our attention onto an area, which is triggered by a sudden change from darkness to bright-light.

The light intensity of the Milky Way is a breathtaking wonder to witness at night —` unrestricted light-pollution has faded this wonder from what was once a valued human experience. You can see the Andromeda Galaxy in the right 1/3 of the frame. Nikon D700 – Nikkor 28mm lens @ F3.5 @ 20 seconds August 11 11:48 p.m.

 

The encouraging news is… the key to reducing light pollution is a simple matter of basic education and action. Public awareness of over-lighting requires a minimal expenditure, which will quickly pay for itself in energy savings and perhaps return the opportunity to experience one of the greatest shows seen from earth. ~

.

Light pollution glossary:

Urban Sky glow: the brightening of the night skies over municipalities and communities, caused primarily from high-volumes  of collective, reflected light and poorly directed light, which is pointed upward or not shielded properly.

Light trespass: light falling or spilling into areas where it is not intended. Also know as “spill light” – as in municipal streetlights, which go beyond the intended illumination of street signs and sidewalks, causing an unwanted exterior lighting of residential homes.

Glare: A direct, bright or harsh light, which causes discomfort or pain. The effects of glare can be reduced or eliminated with the use of a shield or filter.

Uplight: Light angled inappropriately upward towards the sky and serving no purpose. Uplight washes out the night sky and reduces opportunities for astronomers and star-gazer to enjoy the beauty of the planets, moon and stars.

Light Clutter: Poorly planned, confusing and unpleasant use of grouped lights usually associated with urban or retail lighting. Retail business often trying to outdo the competition by using overly bright, multicolored or pulsating lights.

Links to articles & information on light pollution:

http://news.discovery.com/animals/light-pollution-a-growing-problem-for-wildlife.html

www.darksky.org/assets/documents/is001.pdf

www.njaa.org/light.html

www.skymaps.com/articles/n0109.html

en.wikipedia.org/wiki/Light_pollution

ngm.nationalgeographic.com/geopedia/Light_Pollution      

There’s Nothing New Under the Sun, or is There?

 Photos & multimedia e-Learning essay by: David Johanson Vasquez © All Rights — Second Edition
   

Please note: This essay is a follow-up from my chronicle on solar storm effects of the 1859 Carrington Event on an industrial era society— forward to the postmodern, microelectronic world of today. To better understand the context of this article, it’s suggested you view my introduction solar storm essay found  by selecting the March 2012 archives found on the left side of this page.  The National Academy of  Sciences (NAS) (funded by the U.S. Congress) produced a landmark report in 2008 entitled “Severe Space Weather Events— Societal Impacts.” It reported how people of the 21st-century depend on advance-technology systems for daily living, The National Academy of Science stated— Electric power grids, GPS navigation, air travel, financial services and emergency radio communications can all be knocked out by intense solar activity.  A century-class solar storm, the Academy warned, could cause twenty times more economic damage than Hurricane Katrina. [1] Some leading solar researchers believe we are now due to a century-class storm.

Photo courtesy of NASA

July 15, 2012 Aurora Borealis sighting near Everett, WA. This event was caused from an X-class solar storm, which occurred within a week of another X-class storm (X-class being the most severe classification). The 11-year solar cycle is approaching a solar maximum around 2013, this will most likely bring more intense solar storm activity.

.

Depending on your interpretation of the essay’s title, there is nothing new under the Sun when it comes to our neighboring star’s behavior. Since our Sun left its infancy as a protostar over 4 billion years ago, by triggering a nuclear fusion reaction and entering a main-sequence stage, its solar mechanics have maintained relatively consistent patterns. What has not remained the same is the evolution of life on Earth, in particular, our species’ development of a civilization which now is dependent on a form of energy called electricity.

The name “Aurora Borealis” was given by Galileo Galilei, in 1619 A.D., inspired from the Roman goddess of dawn, Aurora, and Boreas from the Greek name for north wind. First record siting was in 2600 B.C. in China. Collision between oxygen particles in Earth’s atmosphere with charged (ionized) particles released from the sun creates green and yellow luminous colors beginning at altitudes of 50 miles (80 kilometers). Blue or purplish-red is produced from nitrogen particles. The solar particles are attracted by the Earth’s northern and southern magnetic poles with curtains of light stretching east to west.

.

Reaching back only a few generations into the 20th Century, electricity was considered a luxury—today ordinary life would be impossible without it! And that’s where our beloved Sun comes into the picture, to potentially cast a shadow on our dependency of electricity. Solar storms have been a reoccurring event before time began, but they didn’t affect people outside of providing a fantastic, special effects light-show                                       until a critical event happened in 1859.

In the mid 19th century, while the industrial revolution was near full development, the resource of electric power was first harnessed. Shortly after the electricity was put into use for    communication using  telegraph technology (a 19th century equivalent of the Internet), is when the Sun revealed                                                                                                  a  shocking surprise in the most powerful solar storm ever recorded, which was known as the Carrington Event.

The year 1859 was near a peak in the Sun’s 11-year solar cycle, when the Sun’s polarity readies for reversal. Approaching  the end  sequence of this magnetic shift, brings a solar maximum , which produces violent solar flares and ejects plasma clouds outwards into space. If the flare occurs in a region opposite of Earth, a Coronal Mass Ejection (CME) may send a billion-ton radiation storm towards our planet. Fortunately, the Earth is protected by a robust atmosphere and a magnetic field surrounding the globe, which protects us from most  solar winds. However, an intense solar storm with its charged plasma cloud  can overwhelm our planet’s protective shields. When an extreme solar storm’s magnetic energy contracts with our planet’s protective magnetic field, it creates geomagnetic induced currents (GICs). GICs are massive amounts of electromagnetic energy which travel through the ground and ocean water, seeking the path of  least resistance in power lines, pipelines and rail tracks.

In the extreme solar storm of 1859, the Aurora Borealis was seen near the equator and it was reported  people were able to read newspapers outdoors at midnight. Navigational compasses (19th century version of GPS)  throughout the world spun-out-of-control due to the flux of electromagnetic energy.

                                                 

A more recent, dramatic example of a solar storm’s impact is the 1989, Quebec-Power blackout. The geomagnetic storm created was much milder than the solar maxim of the 1859, Carrington Event. However, it’s a chilling preview of what a complex, unprotected  electrical grid faces when up against the forces of the super solar storm. Quebec-Power’s large transformers were fried by the GICs overloading its grid network. Electrical grids and power-lines  act like a giant antenna in pulling in the  massive flow of geomagnetic energy. In the 1989 solar storm incident, over 6 million people lost power in Eastern Canada and the U.S., with additional connecting power grids on the verge of collapsing.  Again, the powerful 1989 solar disturbance was not the 100 year super storm, but a small preview of what can if  preparations are made to protect the power grid.
Solar scientist are finally able to put together how extreme storms follow an 11 year solar maxim cycle, like the one we’re now entering, and should peak sometime in 2013. Already this year, six major X-class solar storms, the most intense type, have occurred since January. Within one week of July, we had two of the X-class storms, with the last one pointing directly at Earth.  On July 13, 2012, the Washington Post’s Jason Sometime, wrote an article with his concerns on  how NASA and NOAA were sending out inconsistent warnings about the solar storm from July 12.
The federal agency FEMA, appears to have learned its’ lesson from Hurricane Katrina and being proactive with a series of super solar storm scenarios. These scenarios  illustrate the many challenges towards maintaining communication and electric power, based on the strength of the solar event. Without reliable power, food distribution will be problematic. Today we have less reliance on large warehouse  inventories and more dependency on — “just in time” food delivery. According to Willis Risk Solutions (industrial underwriter insurer for electric utilities) and Lloyds World Specialist Insurer (formerly LLoyds of London), there’s a global shortage of industrial large electric transformer, which now are only made in a few countries. It would take years to replace the majority of the World’s electric transformers and technically require massive amounts of electric power, which ironically, would not be available in an event of an extreme geomagnetic storm.
.
Select companies and  the federal agencies mentioned in this essay, are overall, considered highly respected and cautious in forecasting major threats to societies and national economies. All of the mentioned government entities and scientific organizations realize it’s not a matter  if, but when will the next super solar storm be aimed and sent to Earth.
The good news is we can still take the necessary precautions to protect our society and the economic future from this clear and present threat. Here’s a link to the 2008 National Academy of Science (funded by congress) report:  Severe Weather—Understanding Societal and Economic Impact: A Workshop Report (2008). This group meets every year to work on preventative strategies. The report contains cost-effective protection plans for electric power grids, please see the link provided.
.
.

Chronicles of the largest solar and geomagnetic storms in the last 500 years.

1847  — First geomagnetic storm caused by a solar flare, which inadvertently was documented using emerging telegraph technology.  Reports were the telegraph system was sending clearer signals by disconnecting its batteries and using the geomagnetic energy from the storm.  First published effects caused from geomagnetic storm.

1859  — Becomes known as the Carrington Event; telegraph system becomes inoperable worldwide as some offices are set on fire from supercharge telegraph wire. This is the largest geomagnetic storm in 500 years. Scientists begin documenting future solar storm activity.

1921 — Know as the “Great Storm” worldwide telegraphs and radio signals become inoperable and cables are burned out. This geomagnetic storm is likely to occur approximately 100 years.

1989 —  Major solar flare erupts on the surface of the Sun opposite of Earth; a resulting solar storm triggers a massive geomagnetic storm, which overwhelms Quebec’s power grid. As a result of the storm, six million people instantly lose power as a U.S. Northeast and Midwest connecting grids come within seconds of the collapse. As a result, the Canadian government becomes proactive and develops strategies to  protect its power grid from future solar storms.

2003 — Know as the “Halloween Storms” this series of geomagnetic storms disrupted GPS, blocked High Frequency (HF) radio and triggered emergency procedures at various nuclear power plants. In Scandinavia and South Africa, section of  power grids were hit hard, as many large power transformers were destroyed by the powerful geomagnetic induced currents (GICs).

Chronological  Reports and News Accounts of Solar Storms From 1859 to 2003

This is one of the most comprehensive list of solar storm accounts on the web. The site chronicles strange solar storm happenings; such as reports in the early 1960s  with TV programs suddenly disappearing and reappearing in other regions. Other unsettling reports include the U.S. being cut off from radio communication from the rest of the world during a geomagnetic storm. Please see link below:  http://www.solarstorms.org/SRefStorms.html 

 

Solar Storm Acronyms and Terms

ACE — Advance Compositional Explore = NASA satellite used in detecting and monitoring potential damaging solar flares and CMEs.

AC — alternating current

BPS — bulk power system 

CME — coronal mass ejection = caused from a solar flare near the surface of the sun, which sends  a billion-ton radiation storm out into space.

EHV — extra high voltage

FERC — United States Federal Energy Regulatory Commission

GIC — geo-magnetic induced current = an extreme solar storm’s magnetic energy contracts with our planet’s protective magnetic field, creating electric current which conducts or travels through the ground or ocean water.

GMD — geo-magnetic disturbance

GAO — Government Accounting Office

GPS — global positioning system = A series of satellites positioned in an Earth, geostationary orbit for use in military and civilian navigation

NERC — North American Electric Reliability Corporation

NASA — National Aeronautics and Space Administration

NOAA — National Oceanic and Atmospheric Administration

POES — Polar Operational Environmental Satellite

SEP — solar energetic particle

SOHO — Solar and Heliosphere Observatory (satellite)

STDC — Solar Terrestrial Dispatch Center (Canada)

STEREO — Solar Terrestrial Relations Observatory (Satellite)

.
.
Please view this most beautiful video time-lapse of the Aurora Borealis http://vimeo.com/11407018
.
.

Sources and Links

NASA Resources

Illustration courtesy of NASA

A useful illustration for understanding NASA’s efforts with Heliophysics System Observatory
Detail explanation of space weather and NASA monitoring can be found at the following link:   http://www.nasa.gov/mission_pages/sunearth/spaceweather/index.html
NOAA Solar storm monitors sites:
NOAA is the nation’s official source of space weather alerts, monitoring and alerts. The following NOAA site provides real time monitoring and forecasting of solar and geophysical events.  http://www.swpc.noaa.gov/

NASA and NOAA sites (post warning of impending dangers to the electrical grid from solar storms producing extreme geomagnetic induce currents (GICs) on Earth). http://science.nasa.gov/science-news/science-at-nasa/2009/21jan_severespaceweather/ http://science.nasa.gov/science-news/science-at-nasa/2010/26oct_solarshield/ http://www.noaawatch.gov/themes/space.php

http://www.guardian.co.uk/science/2012/mar/18/solar-storm-flare-disruption-technology

http://www.wired.com/wiredscience/2012/07/solar-flare-cme-aurora/

http://www.usfa.fema.gov/fireservice/subjects/emr-isac/infograms/ig2012/4-12.shtm#3

My solar storm articles from February www.bigpictureone.wordpress.com  and in the March edition of  www.ScienceTechTablet.wordpress.com  present a comprehensive picture of how solar flares and solar storms originate, with the potential of producing geomagnetic storms on Earth.  If these geomagnetic storms are severe enough, they can threaten our way of life. Some strategies and common sense precautions are offered  for civic preparedness in the case of an extreme solar event.

Luminous Beauty of Low-light Photography

Multimedia eLearning by: David Anthony Johanson  © All Rights

David A Johanson is a multimedia specialist, CTE instructor and former Boeing scientific photographer. All images and text were created by the author.

All photographs featured in this photo essay were taken in the Pacific Northwest during the winter season, using low-light, natural illumination. The camera used was a Nikon D700.

As a filmmaker and photographer who uses many forms of light, low-ambient-light has always been a rare delight.  “Magic hour” also know as golden hour, is a term cinematographer’s originated for the holy grail of eye-candy lighting. This dramatic, low-angle light begins minutes before sunset, then dramatically merges into dusk, before entering the realm of twilight.

An enchanting view of Snoqualmie Falls during a record deep freeze. HDR photo technique using a Nikon D700

Magic hour was the gateway for me to explore and develop a passion for this wonderful transcendental light. After sunset, the busy activity of the world begins to wind-down… becoming still, before renewing itself for a new day. When twilight arrives, it presents opportunities to observe and record subtle events, which many of us are not aware of as we dream part of the night away. Digital technology has recently entered a new threshold by producing a select breed of cameras, capable of capturing this marvelous luminosity.

Low angle view of Snoqualmie Falls using HDR technique.

What I relied on before the recent advance in low-light digital imaging is a process termed: HDR photography (High Dynamic Range.)  Basically the technique requires a steady tripod for a camera to take a series of images; typically three to eight exposures are taken of a scene.  At least one image of the scene is under exposed; another exposed for what the camera or light meter indicates as a “correct” exposure, and at least one final, over-exposed image completes the HDR series. The intent is to record the entire range of tonal values, from the subject of interest.

Unlike the human eye, which is our unique window for visualizing the world — most camera light sensors lack the sensitivity to record a wide range of tones within the frame. Typically, if only one exposure is used to record a scene with normal or high contrast, the Camera’s light sensor will compress some tonal values, with tones being lost either in the high or low-end of the scale. HDR photography attempts to solve this limitation by combing multiple exposures to record a more dynamic range of tonal values, which later can be combined to create one image in post-production. The results produced with the HDR process are vivid photographs, which present an image closely resembling our initial impression of a scene. 

Iconic Snoqualmie Falls, encased in ice. HDR photo technique.

Of photo pros I know using HDR applications, Photomatix, has been popular for the past few years. It’s a powerful tool, with flexibility and control to help produce impressive results.  Another favored choice for a HDR app, is found bundled within Adobe’s Photoshop.

An acquaintance recently sent me a YouTube link for promoting Nikon’s HDR software. What I saw featured in Nikon’s video was over processed, over-the-top HDR images.  Perhaps it’s a good app, but the promotion relied on too much eye-candy for my taste. In conversations with fellow photographers and multimedia producers the question becomes — at what point does a skilled technique turn into a gimmick?  Some viewers go gaga for the over processed look, with an image appearing unbelievably surreal, and more suited for an illustration or painting.  As with most pursuits, moderation offers the best results at the end of the day. Taste is all subjective, however, for photography, I prefer an image which retains a photo quality character, versus an over-saturated illustration. Perhaps in our contemporary digital media environment, which presents a constant tsunami of image content, there’s a perceived need to push the limits of effects. Okay, I’m finished with my soapbox moment, of the good, the bad, and ugly use of HDR photography.

I still enjoy using HDR technique, but now more sparingly, since I found a camera capable of producing a dynamic tonal range image,  from a single exposure of low-light environments.

 

 

A parade of snow storms blankets the Pacific Northwest. In-between snow showers, ice sculptures glisten beneath the night stars. Single exposure using a Nikon D700

Occasionally we’ll have powerful snowstorms roar through the Puget Sound area, which presents some exciting, low-light photo opportunities. One evening, at midnight the conditions were perfect for night photography, with crystal clear visibility. Graceful, fast-moving clouds were gliding overhead, then suddenly, an opening appeared to reveal a splendid shimmering of stars from above.

These featured “night snow images” were delightful to capture, as they revealed an enchanting, dreamlike quality to them. The reflective character of snow, also creates a subtle luminosity on the surrounding frozen landscapes. A blend of moon and starlight filtered through shifting openings of clouds, which merged with street lighting to create an infrared-photographic look. All these snow scenes were created from one exposure, made possible by using my low-light Nikon D700 camera.

The night’s stillness sparkles with reflected light.

Winter snow clouds mix with the deep blue night sky. Single exposure using a Nikon D700

Here’s some technical photographic information about low-light photography. Nikon’s D3s is the current leader in high ISO for low-light environments, using the second-generation of full frame, FX sensors. The Nikon D3 and D700 produce the same image quality as each other, with both featuring Nikon’s first-generation full frame, FX sensor cameras.  Surprisingly, Nikon designed the D3s with the same 12+ megabyte resolution as the D3, instead of doubling the amount of mega-pixels. By not inflating the pixel count, it allowed for the same pixel size or “pixel pitch” as the D3 and D700.  Apparently, this matrix extensively increases sensor sensitivity. Currently, FX sensors are the masters of low light by out performing DX sensors by 3 stops.

  If you decide to try low-light night photography, be prepared for challenging conditions and dress to keep warm. Whether you choose to use HDR techniques or single image capture, get ready to discover the wondrous illumination, that low-light photography will reveal to you.

Luminous winter stars prevail and shine through another set of passing clouds. Single exposure using a Nikon D700

  [contact-form] [contact-field label="Name" type="name" required="true"/] [contact-field label="Email" type="email" required="true"/] [contact-field label="Website" type="url"/] [contact-field label="Comment" class="GINGER_SOFATWARE_noSuggestion GINGER_SOFATWARE_correct">textarea</span>" required="true"/] [/contact-form]

Photo Essay of Pirates Invading the Port of Vallejo.

Photo Essay by: David Johanson Vasquez

 

Summer Greetings,

Some of you know I enjoy photographing examples of diverse and alternative lifestyles, so fortune smiled on me when destiny presented an unusual treasure.

On a summer’s eve one June, I journeyed to Central California and explored some northern cities of the San Francisco Bay Area. Sonoma County, with its savory wine country, was one of our day-trip destinations.  However, we diverted the plan just north of Walnut Creek, which pointed us in another direction; as we heard tale of a pirate festival being hosted in the port city of Vallejo, on the Bay north of San Francisco.

Amazingly, after getting a little lost entering Vallejo, luck was with us as we found parking next to the park where the festivities were in full progress. The sound of canons being fired in volleys led us to this unlikely gathering. Yes, just as you can imagine, hundreds of swashbuckling, pistol-packing pirates, consuming liberal amounts of distilled spirits were all there.  A pious lot the buccaneers were not, and much to our relief, they were still courteous enough and not too threatening to non-pirates, as our group had not come prepared with a single eye-patch or parrot among us. Pirate Festival Vallejo, CA June 20, 2009

 

 

 

 

Pirate Festival Vallejo, CA June 20, 2009

 

Most pirate women in attendance prefer the name “wenches” (from the Old English word – wencel,) gave me a new understanding of the term “pirate booty.” Many of these fair maidens used 18 century style clothing, which compressed and contorted the female anatomy in the shapeliest way. My better-half informed me I would definitely be in need of an eye-patch if my camera remained focused on their attributes for too long.Pirate Festival Vallejo, CA June 20, 2009

Pirate Festival Vallejo, CA June 20, 2009The word pirate is such a varied term; it goes back to ancient times of the Phoenicians, when marauders from the sea plagued the Greeks and Romans. References to pirates are found in just about every culture from China and India to the Vikings in Scandinavia. So it was only natural that this gathering of pirates in Northern California would include buccaneers of every size, shape, culture, color and time period, which could be imagined. Even postmodern pirates equipped with cell phones, digital cameras and Mp3 players were all present – socializing and exchanging salutations.

What more can I say about an unexpected adventure experienced within a unique atmosphere other than what I saw? It was one of those rare surreal events that make you ponder – did I really experience that and what century are we living in again?

Here’s to wishing you a summer of smooth sailing.