Big Picture One – Directory Of Multimedia eLearning Posts

Multimedia essays & eLearning programs by: David Anthony Johanson  © All Rights 

To quickly view sites of interest, just click on the white text to the right of the feature photo & above the program’s description. You also have the option to navigate to each essay by simply scrolling down past the end of this directory.

Essays are listed in chronological order from when they were first published.

You’ll find in each program essay, a spectrum of resources to help better understand & appreciate the subject matter. To enhance your experience, a variety of carefully considered dynamic content is used, including: photographs, videos, graphics, text & hyperlinks to other sites. Every effort is made to assure the information presented is factually correct by cross referencing content & giving proper credit for creative work used in the stories & essays.

You’re invited & encouraged to comment on the programs presented here, by doing so, you enrich the site by making it a more interactive experience. All constructive comments are welcome, even if you’re not in total agreement with the article’s point of view.

The author of these sites is a multimedia photographer, CTE instructor and a former Boeing scientific photographer.

For an alternative graphic format of these programs, please visit — www.ScienceTechTablet.wordpress.com 

————————————————————————–

Rattlesnake R hike BPP_e11

https://bigpictureone.wordpress.com/2014/12/31/new-brain-based-learning-strategies-explored-using-neuroimaging/  New Brain-Based Learning Strategies Explored To Help Achieve Your Full Potential. Finding and sharing new learning strategies, that are inspired from evidence based, neuroimaging and brain-mapping studies, is a dynamic process to help assist individuals in reaching their full learning potential. Brain-based learning is a spectrum of teaching strategies, which uses neuroscience research on how the brain functions in achieving ideal development and potential. Learning concepts used: Applied Learning, Adult Learning, Competency-based Learning, Critical Thinking, Integrative Learning. Key: Words or phrases italicized are used to focus on essential concepts or terms for enhanced learning and retention.

—————————————————————————

Antares_launch_graphic_ae2

https://bigpictureone.wordpress.com/tag/gone-in-30-seconds-elearning-program-on-rocket-launch-disaster/  Gone In 30 seconds… It’s estimated that an average of 8 percent of all commercial rocket launches end in failure. This eLearning program includes a compendium of 20th & 21st century rocket launches, including dramatic failures. A succinct introduction to space law is included for greater appreciation of the consequences and liabilities related to the growing number of commercial rocket launches. A detailed world map illustrates the major spaceports & launch centers using GPS coordinates and web address. 

An eLearning program for secondary/post secondary education and community learning content covered: — aerospace/astronautic engineering, avionics, economics & business, environmental footprint, financing, manufacturing, marketing, obsolescence management, technology& Space Law. Learning concepts used: Applied Learning, Adult Learning, Competency-based Learning, Critical Thinking, Integrative Learning. Key: Words or phrases italicized are used to focus on essential concepts or terms for enhanced learning and retention.

——————————————————————————

Boeing_Paine_Field_BPP_Ae3083

https://bigpictureone.wordpress.com/tag/david-a-johanson-historian/  Will The Next Jet Airliner You Fly Be Obsolete, And Ready for Early Retirement?  This multimedia essay examines the evolving financing strategies and technological developments affecting older generation commercial aircraft. An eLearning program for secondary/post secondary education and community learning. Assessment tool: A quiz and answer key is located at the end of the program. Learning content covered: aerospace/airliner— aerospace engineering, avionics, economics & business, environmental footprint, financing, manufacturing, marketing, obsolescence management, technology. Learning concepts used: Applied Learning, Adult Learning, Competency-based Learning, Critical Thinking, Integrative Learning. Key: Words or phrases italicized are used to focus on essential concepts or terms for enhanced learning and retention.

[ Disclaimer: David Johanson is a former Boeing scientific photographer and currently has no stock holdings or a financial interest in: Boeing, Airbus or any other companies referenced in this program. Research in this article has been cross referenced using at least three sources, however, all perspectives and opinions represent only the viewpoints of the author.]

——————————————————————————

Arctic_Tundra_Oil_Field_e1003

https://bigpictureone.wordpress.com/2014/04/22/the-environment-our-earths-lost-frontier/ The Environment, Our Earth’s Lost Frontier. A photo essay dedicated to the environment using photos from editorial and industrial photo assignments. From Alaska’s oil rich Arctic region to the tropical rain forest of Hawaii, environmental encounters and stories are visually shared. eLearning – suitable for secondary/postsecondary education, community & extended learning. Photo-illustration, graphics, text and links on Earthday and the environment included within this program. 

——————————————————————————

Mars_MP_BPP_ae214

https://bigpictureone.wordpress.com/2014/03/04/the-martian-prophecies-earths-conquest-of-the-red-planet/  The Martian Prophecies. In this futurist multimedia photo essay, a correspondent from 2054 presents a series of Astronautical engineering and Astrobiology developments enabling the remarkable colonization of Mars. ELearning – suitable for secondary/postsecondary education, community & extended learning. Extensive photo-illustration, graphics, text and links on Mars colonization included within this program.

——————————————————————————-

Steam_punk_Fairhaven_BPP_2013_w 1

https://bigpictureone.wordpress.com/2013/09/11/an-introductionary-guide-to-steampunk/ A Beginners Guide to Steampunk. — Photo essay introduction to Steampunk subculture. As a sub-genre of science fiction its practitioners feature Victorian era clothing along with accessories such as goggles, intricate antique jewelry & a wide spectrum of retro-futuristic attachments. Subjects include critical thinking, alternative lifestyle, 19TH Century Industrial History & Steampunk Etymology.

—————————————————————————

Rome_Archt_BBP_0344

https://bigpictureone.wordpress.com/2013/07/31/how-did-romes-vitruvius-become-the-worlds-first-impact-player-in-architecture/  Multimedia photo essay introduction to Roman architect & engineer Vitruvius, who writes the first book on architecture. Vitruvius’ influence is relevant for modern architecture, STEM, Pre-Engineer & CTE related content. For Secondary & post secondary learning. ELearning, Links relating subject matter, quizzes for learning. Extensive photography of Roman architecture featured from: Rome, Ostia Antica & Herculaneum.

————————————————————————————————-

Pearl_Harb_VC_BPP_e8v474bigpictureone.wordpress.com/tag/photos-of-pearl-harbor-visitor-center/  Low light architectural photography of the new Pearl Harbor Visitor Center on Oahu, Hawaii. Multicultural essay of modern Hawaiian & Pan Pacific Cultures. — multimedia photo essay, eLearning, photo tutorial on marketing & night photography, reference links

————————————————————————————————-

Sky_look_ BPP_ae208Is Space Law Really That Far Over Your Head? | bigpictureone   Space Law introduction, case studies, space port launch sites, space debris, asteroid mining includes history of the modern rocket program. — Multimedia essay, eLearning, STEM & CTE content, quizzes, interactive map, video links, reference links
———————————————————————————————– 
30756_1424678490440_7205732_n

Reflecting on the 33rd Anniversary of Mount Saint Helens Eruption | bigpictureone    Reflections on a close encounter with one of the worlds most active stravovolcanos.  Mt. Saint Helens eruption – photo essay, eLearning, reference links

————————————————————————————————-

What Chance Will America’s Youth Have In A Changing   STEM_EXPFair_ESD_BPP_E23Global Economy? | bigpictureone STEM Education & Magnet Schools – Origins of the program & its success in public education. STEM expo at Mountlake Terrace HS -Edmonds School District.–  Multimedia essay, eLearning, STEM & CTE content, reference links

————————————————————————————————-

Photo-illustration: David Johanson Vasquez © All RightsReflections From A Future Hawaii. Can A Tropical Paradise Become A Portal To Deep Space? | bigpictureone   Futuristic Hawaii in the year 2054 as it’s transformed into a space port & gateway to space. — Multimedia essay, eLearning, links

————————————————————————————————-

Waikiki_Santa_BPP_E22An unusual encounter with a Waikiki Santa Clause | bigpictureone      Photo essay of a Waikiki Santa Clause using an adaptation of Clement Clare Moore’s (1799 -1863) classic poem — Twas the night before Christmas. Multimedia photo essay.  Mele Kalikimaka! — multimedia, poetry, eLearning

————————————————————————————————-

Silhoute_man_ocean_BPP_E227https://bigpictureone.wordpress.com/2012/12/20/will-the-last-people-remaining-in-america-turn-the-lights-back-on/  Multimedia essay on solar flares, solar/geomagnetic storms & solar maximum of 2013-2014. Potential solar storm scenarios, which government scientist & federal agencies are warning about, including loss of world power grids. Resources & links to various publications & sites  included. — multimedia, eLearning on solar storm history & threats to current infrastructure, STEM related content, quizzes, reference links

———————————————————————————————

EPSON scanner imageA Glimpse Into Havana’s Legendary Watering Hole | bigpictureone Family photo taken in 1941 at Havana’s Sloppy Joe’s, inspired this photo essay of events shortly before & after the start of WWII. Family chronicled as they arrive in Panama for reunion with my grandfather, evacuated & survive being stalked by German wolf-pack U-boat submarine. — multimedia essay – eLearning

————————————————————————————————-

R22_Helicopt_DAJ_44The Latest Full Throttle Multimedia Video of Seattle From the R22 Beta Helicopter – Part 2 of 2 | bigpictureone  Helicopter safety & repair video, aerial photography of Seattle & Boeing field, using an R22. — STEM & CTE learning, multimeida, eLearning, quizzes video essay.

————————————————————————————————-

R22_helicopt_DAJ_42A Full Throttle Multimedia Video of Seattle      From the R22 Beta II Helicopter – Part 1 of 2. | bigpictureone  Helicopter safety & repair video, aerial photography for Port of Seattle, from Boeing Field, using an R22, eLearning video essay. STEM & CTE learning, aerospace engineering. — mutlimedia, eLearning, quizzes, resource links

————————————————————————————————

Man_micro_chip_BPP_et169https://bigpictureone.wordpress.com/2012/08/31/who-were-the-titans-of-telecommunication-and-information-technology/ Introduction to R&D research labs through a multimedia history of Bell Laboratory, its developments inventions. Second chapter explores Xerox PARC founding in Silicon Valley &  contributions it made to personal computing & telecommunications. — eLearning, quizzes, reference links

————————————————————————————————-

Star_Showr_Ref_Lk_BPP_e616https://bigpictureone.wordpress.com/2012/08/16/blinded-by-the-light-in-the-middle-of-night/  Photo essay on light pollution’s effects on night photography, astronomy, animal migrations & quality of life. Mount Rainier National Park & long exposure photographs of landscape & star constellations are featured in this essay. — multimedia, eLearning, STEM related content,  quizzes, resource links

————————————————————————————————-

Aurora_Bor_BPP_il_0011_1https://bigpictureone.wordpress.com/2012/07/20/theres-nothing-new-under-the-sun-or-is-there/  Multimedia essay introduction to solar storms (including historical perspective), CME’s, effects of geomagnetic disturbances & potential threats to global electrical power grids. The connection between solar storm activity & aurora Borealis — eLearning, STEM related content, quizzes, resource links

————————————————————————————————–

Orvi_Italy_BPP_E0412https://bigpictureone.wordpress.com/2012/02/21/exploring-etruscan-ruins-beneath-the-cliffs-of-medieval-orvieto-italy/ Multimedia essay on one of Europe’s best kept secrets — the medieval fortress citadel, Orvieto. Explores Etruscan ruins, grottos, medieval architecture, massive cathedrals & nearby Umbria countryside. Examines Etruscan art & its misunderstood cultural traditions under the shadow of the Roman Empire. — Critical thinking, World history & culture, travel, e-Learning, extensive photo gallery, quizzes, resource links

——————————————————————-

Paint_Hills, BPP__42https://bigpictureone.wordpress.com/2012/04/07/1382/ Multimedia essay includes video interview with a National Park Service’s ranger on the unique geology & wildlife qualities of John Day National Monument’s Painted Hills. Video features exclusive walking tour, which occurs only once per year. — night photography, resource links

———————————————————————————————

Boe_ing_787_First_Flt_BPP_Bg404Boeing’s 787 Dreamliner Historic First Flight From Paine Field, Everett, WA. | bigpictureone Historic first flight video of Boeing 787 Dreamliner at Everett facilities by BigPictureOne. Multimedia of Boeing Scientific photography experience related to aircraft structures & test engineering. — ELearning, STEM & CTE Ed, large photo gallery, quizzes, resource links

————————————————————————————————-

SeaSPNed_BP_90_MRhttps://bigpictureone.wordpress.com/2012/04/22/the-world-event-which-launched-seattle-into-a-post-modern-orbit-50-years-ago-today/  Multimedia essay explores an early postmodern World’s fair — known as Seattle’s Century 21 Worlds Fair, opened in 1962, during the Cuban Missile Crisis.  e-Learning, STEM related content, quizzes, extensive photos

———————————————————————————————–

twinT_WTC_NYC BPP_arl_44https://bigpictureone.wordpress.com/2011/09/12/the-day-after-911-ten-years-after/ Multimedia narrative of a 1998 visit to the NYC World Trade Center Towers & the aftermath of the 9/11 terrorist attacks. Seattle architect Minoru Yamasaki’s designs of the NYC Trade Centers are compared with his Seattle Science Center design for the Century 21 Worlds Fair —eLearning, critical thinking, extensive photo gallery, quizzes, resource links

—————————————————————————————–

Snoqu_almie_Falls_BPP_Ae_6174Luminous Beauty of Low-light Photography | bigpictureone Photo essay tutorial on low-light photography. Strategies & techniques of using low noise sensors in digital cameras. Terms such as magic hour & HDR photography are explained. — eLearning, CTE related content, photo gallery

————————————————————————————–

Kingdome Demo_BPP_ 2KIngdome demolition March 26 2000 | bigpictureone Video multimedia essay of one of the World’s largest demolitions of Seattle Kingdome. E-learning, video tutorial (featured slow-motion & high-speed video effects), essay of event & aftermath from dust storm. Reference links included.

————————————————————————————–

Tech_abst_BPP__3ea1Will The Current Solar Storms Hitting Earth, Lead To Lights-out for us by 2013-2014? | bigpictureone A multimedia essay introduction to solar storms, history of geomagnetic effects on industrial & postmodern societies. Civil preparedness, Photos & videos of Aurora Borealis. STEM & solar physics undergraduate content, extensive photos, resource links

———————————————————————————————

[contact-form][contact-field label='Name' type='name' class="GINGER_SOFATWARE_correct">/][contact-field label='Email' type='email' class="GINGER_SOFATWARE_correct">/][contact-field label='Website' class="GINGER_SOFATWARE_correct">/][contact-field label='Comment' type='textarea' class="GINGER_SOFATWARE_correct">/][/contact-form]

Blinded By Light, In The Middle Of Night

 
Multimedia eLearning program by: David A. Johanson © All Rights  — Second Edition

The author is a multimedia specialist, CTE instructor and a former Boeing scientific photographer. For an alternative formatted view of this program, please visit — www.ScienceTechTablet.wordpress.com

 

My photo wingman, Rick Wong and I headed into the heart of darkness in a quest for the Perseid meteor showers. Mount Rainier National Park, was our destination to use its iconic landmark for framing an infinite field of stars—far from the glare of city lights. Traveling at night in Rick’s new hybrid Ford Fusion, equipped with “information technology”—voice navigation, made it easy finding the park without using a map.

Arriving at our location, luminous stars lit up the night as expected, but we were surprised by some uninvited competition, which nearly stole the show.

A stunning view of Mount Rainier reflected in Reflection Lake, with the summer stars overhead. The pink and orange glow on the left side of the mountain is light pollution emitted from the City of Tacoma, approximately 65 miles northwest.

We found an ideal location above Reflection Lake to begin our photo shoot, with one of the Cascade Mountain’s most famous stratovolcano in the background. An unexpected warm light was glowing behind Mount Rainier, which I reasoned, was a faint remnant from the earlier sunset. However, the sun had set at least four hours earlier, so it couldn’t be the source of the illumination. Rick suggested “its light coming from the City of Tacoma,” located about 65 miles away. During a 20-second long exposures used to take an image of the snow-capped mountain, I began thinking about the effects caused by light pollution.
With a bright moon rising, we worked fast to keep up with the changing light, until its intensity eventually overpowered the stars.

Just now, the moon was rising higher into the night sky, it too was causing us to shift focus on what to photograph. Like a giant diffuse reflector, the moon reflected soft, filtered light onto a previously dark, formless landscape. Moonlight was beginning to compete with the canopy of stars’ brilliance, partially masking crystal clear views of the Milky Way, along with some meteor sightings. So being photo opportunist, we used the moonlight to illuminate shadow-detail on Rainier’s south face.

Like some sorcerer conjuring an intense cauldron of red light, the photographer adjusts his digital settings before Mount Rainier and her crown of stars above.

A Peaceful Paradise Lost                                                                                             There’s a tranquil feeling while in the process of taking long exposures at night; it’s normally quiet and not many visual distractions overwhelm the senses or interrupt your focus. I personally enjoy these rare opportunities of solitude, to visualize an image, using a minimal, Zen like perspective.

 

When a distraction, like a car suddenly rounding a corner occurs, it’s often an annoyance, which takes you out of the moment. My moment was taken by clusters of cars, with glaring lights as they came around a turn… just as the moon illuminated the mountain, as it was reflected onto a perfectly still lake.. Their headlights flooded the calm mirror-like water and stands of old growth trees beyond with glaring intensity— as I used my hands in an attempt to shield the lens from light flare. Finally, the cars diapered into the darkness with no more approaching vehicles until dawn.

Photo-illustration of micro light sources, which can cause light pollution by unintended spill-light.

Moving above the lake to find new angles for interesting compositions, I took notice of something not seen before. Lights of various colors were coming from photographers bellow me, created by their digital camera’s preview monitors and infrared sensors for auto focusing. With the low light-sensitive Nikon cameras I was using, these multicolored monitor lights, appeared like a bright flare on the long exposure images. Now, I had one more unwelcome light source to avoid, which required strategic timing in the photo’s exposures to minimize glare.

Again, my thoughts returned to the issues of light pollution. Recalling the time back home, when I attempted to photograph some constellations at night, only to have a neighbor’s motion sensor flood light, overwhelmed the backyard with brightness. The piercing light  forced me to find the last remaining, isolated shadowed corner of the yard.

My reminiscing was cut short by a distant, but bright, pinpoint of light from bellow Mount Rainier’s summit. Flashlights from mountain climbers near Camp Muir shined bright—like lighthouse beacons from the semi darkened rocks and glacier fields on the mountain. Even the faintest light can shine bright at night as was noted during World War II, when warships were forbidden from having any exterior lights on at night — including a lit cigarette, which posed a risk of being spotted from great distances by enemy submarines.

Lights from mountain climbers on the approach to the summit of Mount Ranier.

Encountering the Universe’s Brilliance                                                                       The improper, overuse of outdoor lighting has erased one of our basic and most powerful human experiences—encountering the universe’s brilliance with its galaxies and billions of stars shining in the night sky! Making visual contact with our own galaxy, the Milky Way, is one of the greatest shows seen from Earth.

 

In less than a century of civilization’s reliance on electric technology: two-thirds of the U.S., half of Europe and a fifth of people in the world—now live where they cannot see the Milky Way with the unaided eye. You can appreciate how we lost our stellar view by seeing aerial photos taken from orbiting spacecraft and the International Space Station. These startling images taken of the Earth at night, reveal a man-made galaxy of artificial light, which cancels out much of the real one in the sky above.

.

Some years back, I was a part-owner in a small recreational ranch, in Eastern Washington’s, Okanogan County. Brining friends over from Seattle, it was often nighttime when we arrived. The instant of exiting the cars, was a startling event as the Milky Way’s intensity of light overwhelmed your senses. The “ranch” was remotely located, at about 5,000 feet in the mountains, near the Canadian border and 30-miles from the closest town. Days would go by where we didn’t see a car or even hear a small airplane go overhead… it was one of the most refreshing experiences of my life, to perceive nothing except wind going through trees and seeing only starlight at night for hours at a time.

Image courtesy of NASA

A television interview with the director of a major observatory in Southern California recounted when Los Angeles had its last electrical blackout —people were calling 911 and his observatory, with reports of strange, bright objects in the night sky. Actually, what the callers were seeing for the first time, was the Milky Way’s canopy of shining stars.

   

Image courtesy of NASA.

Besides forfeiting a life inspiring, wondrous view of the cosmos, there’s tangible losses associated with light pollution. Conservative estimates are—30 % of U.S. outdoor lighting is pointed skyward in the wrong direction, which wastes billions of dollars of electricity. The unnecessary practice of lighting clouds, burns more than 6 million tons of coal, which adds: harmful greenhouse gas emissions, along with toxic chemicals into our atmosphere and water.

Further scientific studies indicate wildlife is suffering the ill effects of excessive urban lighting. The City of Chicago has taken measures to turn off or dim its high-rise lighting to enable migrating birds to continue normal migration patterns. An increase in species of insects attracted to light along with rodents, which are drawn towards bright city lighting, is a growing concern to many scientists.

Heavy equipment product shots never look quite this good. Scheduled improvements to the viewing area above Reflection Lake, had some equipment, taking a nap, before going to work when the sun came up.

Education Is the Solution to Light Pollution                                                                    The reason light pollution continues to expand is, we have grown accustomed to its seemingly benign presence. After all, probably no one can point to a single case of a person killed from overexposure to light pollution. However, there is a growing correlation of health risks associated with overexposure from artificial light. Some of the main symptoms include, physical fatigue and damage to eyesight. This lighting health risk was recognized in 2009, when the American Medical Association officially established a policy, which supports the control of light pollution.

.

Municipal lighting codes are beginning to help define and eliminate unnecessary light pollution. Lighting enforcement can create a more pleasing environment, by reducing excessive urban lighting, which causes fatigue from glare and cuts down on unnecessary electric utility cost. Redirecting outdoor lighting away from the sky where it is needlessly wasted is a simple and easy solution.

Installing motion detector security lights are another efficient and productive mitigation strategy. For security purpose, a light, which is triggered by motion is much more effective for crime prevention than a continuous floodlight. Motion detector lights have a clear advantage of focussing our attention onto an area, which is triggered by a sudden change from darkness to bright-light.

The light intensity of the Milky Way is a breathtaking wonder to witness at night —` unrestricted light-pollution has faded this wonder from what was once a valued human experience. You can see the Andromeda Galaxy in the right 1/3 of the frame. Nikon D700 – Nikkor 28mm lens @ F3.5 @ 20 seconds August 11 11:48 p.m.

 

The encouraging news is… the key to reducing light pollution is a simple matter of basic education and action. Public awareness of over-lighting requires a minimal expenditure, which will quickly pay for itself in energy savings and perhaps return the opportunity to experience one of the greatest shows seen from earth. ~

.

Light pollution glossary:

Urban Sky glow: the brightening of the night skies over municipalities and communities, caused primarily from high-volumes  of collective, reflected light and poorly directed light, which is pointed upward or not shielded properly.

Light trespass: light falling or spilling into areas where it is not intended. Also know as “spill light” – as in municipal streetlights, which go beyond the intended illumination of street signs and sidewalks, causing an unwanted exterior lighting of residential homes.

Glare: A direct, bright or harsh light, which causes discomfort or pain. The effects of glare can be reduced or eliminated with the use of a shield or filter.

Uplight: Light angled inappropriately upward towards the sky and serving no purpose. Uplight washes out the night sky and reduces opportunities for astronomers and star-gazer to enjoy the beauty of the planets, moon and stars.

Light Clutter: Poorly planned, confusing and unpleasant use of grouped lights usually associated with urban or retail lighting. Retail business often trying to outdo the competition by using overly bright, multicolored or pulsating lights.

Links to articles & information on light pollution:

http://news.discovery.com/animals/light-pollution-a-growing-problem-for-wildlife.html

www.darksky.org/assets/documents/is001.pdf

www.njaa.org/light.html

www.skymaps.com/articles/n0109.html

en.wikipedia.org/wiki/Light_pollution

ngm.nationalgeographic.com/geopedia/Light_Pollution      

The World Event Which Launched Seattle Into a Postmodern Orbit, 50 Years Ago Today.

Photos and essay by: David Johanson Vasquez © All Rights – Third Addition

Content includes: Blended learning, critical think, Seattle Postmodern History, (Video Links – MGM film segments with Elvis Presly at Seattle’s World Fair, postmodern video of early NASA rocket launches & spacewalks, video defining “postmodernism”)  (Web links, history org feature of Century 21 Seattle’s World’s Fair & Architect Japanese American Minoru Yamasaki)

On this day, April 21st, 1962, Seattle’s Century 21 World’s Fair opened the doors for its national and international visitors.  Eventually, almost 10 million guests attended the entire event to — “imagine a futuristic tomorrow,” which promised technological wonders for improved living and for promoting world harmony.

Century 21 Fair Exposition Logo.

The 1851 London World’s Fair, which took place in London’s  Crystal Palace, was the vanguard of this type of global gathering.  The industrial age was in a mature stage of development, offering new and exciting forms of technologies. In this era, people became aware of time-and-space being compressed — due to steam-power’s ability to hasten long-distance travel with the locomotive and steamship.  As the World’s people experience shrinking obstacles towards bringing distant nations and cultures together—the creation of global fairs was created to promote industrial development and international exhibits.

Queen Victoria opens the first international World's Fare in 1851. ( Image in public domain )

Queen Victoria opens the first international World’s Fair in 1851. ( Image in public domain )

Seattle’s first World’s fair — Alaska Yukon Pacific Exposition in 1909, occurred near the peak of an industrial age, which helped Seattle obtain national name recognition.

The Space Needle, an iconic landmark from Seattle’s 1962 Century 21 World’s Fair.

Significantly, the Century 21 World’s Fair was created in an emerging postmodern era. The Fair was remarkably successful with a number of tangible results, notably: it was one of the select few world event of its kind, which made a profit and most importantly, it lifted Seattle out of its perceived provincial setting, and placed it onto a world stage. The timing was ideal for the city’s economic development trajectory.  With Boeing Aerospace as a Seattle-based company, it benefited from the international exposure, at a time when the postmodern world began to embrace jet travel for global access.

Seattle Center with Mount Rainier in Background.

Optimism and enthusiasm associated with the 1962 World’s Fair was authentic, however, in the big picture, a dark shadow was growing with super-power tensions. As the cold war thermometer was nearing a boiling point, a serious situation was escalating.  President Kennedy’s excuse of having a cold for not attending the Century 21 closing ceremony in October was a ruse — actually his efforts for de-escalating the Cuban Missile Crisis were urgently required.  As a result of averting a nuclear war over Cuban missiles, President Kennedy successfully presided over the United States, United Kingdom and Soviet Union’s signing the Comprehensive Nuclear Test Ban Treaty (CTBT) in  the following year of 1963.

Ironically, it was the Soviet Union, which created the theme of science for Seattle’s Century 21 World’s Fair. On October 4, 1957 the Russians launched Sputnik, the first orbiting man-made satellite, which gave them an edge in space development. With the Soviet’s apparent satellite success, Americans feared they were falling behind in science and technology; as a result of tech envy, a theme of science became the framework for Seattle’s Worlds Fair.  From this time forward, the U.S. Set goals to be leaders in space exploration and technology development.

Elliott Bay with Seattle Center and Mount Baker in background.

The shock-wave effect created by Sputnik, awoke America from its complacency of 1950s idealism.  Now, a sense of urgency was created  in looking for optimism within the futuristic Technology of tomorrow.  This quest for all things technological, was the fuel which Seattle used for launching its World’s Fair.  Late in 1957, the title: Seattle Century 21 World’s Fair was selected as the brand name to help promote America’s vision of optimism in a technological future.  To champion this cause, Albert Rossellini, Washington State Governor from 1956 to 1965, selected an exceptional group of business and civic leaders for a commission which successfully acquired local and national financing for the Seattle World’s Fair.

Governor Albert Rossellini, on Veteran’s Day 1961.

Governor Rossellini, a Pacific Northwest civic titan, had the vision which helped develop the region into a world-class, economic dynamo.  The Century 21 World’s Fair, along with the state’s modern transportation infrastructure , and post secondary education developments are just a few examples of Albert Rossellini legacy. One more fascinating contribution from Governor Rossellini was his contribution in bringing the “King of Rock and Roll” to Seattle’s World Fair. Albert Rossellini actually pitched the idea to MGM, for making a movie with Elvis Presley (click on the video link ↓ )  It Happened at the World’s Fair — (Movie Clip) Happy Ending  Enlisting Elvis, a mega superstar, to help promote the Fair in a movie was a brilliant marketing move, with true creative vision!

Most impressive icons of the Century 21 Fair are the Space Needle and Monorail, which went on to become revered Seattle landmarks and its biggest tourist attractions.

The ever popular Seattle Monorail is gliding past Paul Allen’s EMP building.

Internationally, the Space Needle is a more recognizable symbol of Seattle, than the city’s actual name or any other single reference.

The inspiration for the Space Tower as it was initially called, came from a napkin sketch by C21 chairman, Eddie Carlson of a 400’ TV Tower with a restaurant in Stuttgart Germany.  The idea of a tower with a “flying-saucer” shaped restaurant at the top, was presented to architect John Graham, who added the concept of a rotating restaurant to allow viewers a continuous change of panoramic views.  Victor Steinbrueck, professor of architecture at the University of Washington and architect John Ridley produced concept sketches which featured an elegant tripod, crowned with a saucer structure observation deck.

Minoru Yamasaki, a first-generation Japanese American, born in Seattle, was the main architect, along with Seattle’s NBBJ Architects chosen in designing  the U.S. Science Pavilion, today’s Pacific Science Center.

Minoru Yamasaki’s innovative, graceful design was also used for Seattle’s most daring piece of architecture, the Rainier Tower, supported by a gravity defying inverted pedestal!

Another of Minoru’s Emerald City designs is the IBM Building, used as a model for the New York City twin tower design (destroyed in the 2001 terrorist attacks.)  The architectural style of the Pacific Science Center and NYC twin towers is “gothic modernism,” which is found in most of Minoru’s designs (please see examples of Gothic modernistic elements in the photographs be low.)

Seattle IBM Building designed by Minoru Yamasaki, was used as the model for NYC WTC Twin Towers. An example of Yamasaki’s “gothic modernism” style.

 

During the summer of the World’s Fair opening, my parents took me to experience the exposition. Although I was very young while attending… I clearly recall the impressions of wonder from seeing the futuristic architecture and dynamic exhibits.  The theme of life in the 21st century, awoke my imagination and interest in science technology at an early age, which still continues to this day in the form of stories, essays and multimedia work, which I share with you now. ~

Twilight view of Space Needle and Pacific Science Center.

A must see postmodern era video featuring the beginnings of the space race. Click on link below. ↓

http://www.youtube.com/watch?v=rfVfRWv7igg 

What is postmodernism video (click on video link below ↓)

http://www.youtube.com/watch?v=oL8MhYq9owo 

HistoryLink to Century 21 — The 1962 Seattle World’s Fair, Part 1 ( Click on link below ↓)

http://www.historylink.org/index.cfm?DisplayPage=output.cfm&File_Id=2290

Will The Current Solar Storms Hitting Earth, Lead To Lights-out for us by 2013-2014?

Essay and photos by: David Johanson Vasquez © All Rights

 Solar Storm forecast & updates are located above the essay’s first paragraph. These updates will be posted anytime a major solar disturbance is cited. Please read the essay first and return at anytime to view posted updates.

Joint USAF/NOAA Report of Solar and Geophysical Activity
SDF Number 197 Issued at 2200Z on 15 Jul 2012

IA.  Analysis of Solar Active Regions and Activity from  14/2100Z
to 15/2100Z:  Solar activity has been at low levels for the past 24
hours. Region 1520 (S17W48) remains the largest and most
magnetically complex region on the disk, however it has remained
rather stable and quiet. Regions 1521 (S21W60) and 1519 (S17W68) 
have been the most active regions producing low-level C-class
events. Both regions have shown moderate growth in sunspot area and
magnetic complexity. No Earth directed CMEs were observed during
the period.

IB.  Solar Activity Forecast:  Solar activity is expected to be at
low levels with a chance for M-class events for the next three days
(16-18 July).

Friday 13th, 2012— A massive X-Class Solar Flare, which occurred yesterday, is hurling  a coronal mass ejection (CME) towards Earth and will arrive approximately 5:17 A.M. EST according to NASA.  Several events involving this latest solar storm are unusual and are cause for concern: it’s the second massive X-Class (X is the most powerful class of Solar Flares) to take place within a week, the angle of the CME is pointed directly at Earth, potential sighting for the Northern Lights within the southern U.S., NOAA’s forecast is for a mild to moderate  geomagnetic storm on Earth, while NASA predicts a medium to severe storm to occur.

Earlier today, The Washington Post reported  of the conflicting geomagnetic forecast from the leading Federal agencies who monitor solar storms. Today’s events concerning solar storms are matching those cited in the featured February 2012 BPI  essay, indicating early warning of a destructive CME.

NOAA /   Prepared jointly by the U.S. Dept. of Commerce, NOAA,
 Space Weather Prediction Center and the U.S. Air Force. 3-day Solar-Geophysical Forecast issued Jul 08 22:00 UTC   http://www.swpc.noaa.gov/today.html

Solar Activity Forecast: Solar activity is expected to be moderate with a chance for X-class events for the next three days (09-11 July).

Geophysical Activity Forecast: The geomagnetic field is expected to be mostly quiet on day one (09 July). Quiet to unsettled conditions are expected on day two (10 July), with a chance for isolated active periods due to possible weak effects from the CME observed on 06 July. A return to mostly quiet conditions is expected for day three (11 July).

This year has seen a steady influx of news reports on increased solar storm activity hitting  Earth. Most broadcasts concerning this development is of a less serious kind, featuring its spectacular visual effects, which creates the unworldly, “Northern Lights” or “Aurora Borealis.”  However, a few reports have mentioned necessary cancellations of airline flights using trans-polar flight routes—due to the sun’s disruptive solar flares. Intense solar activity is nothing new, but a recurring event—which has taken place countless times before civilization ever existed on Earth. What’s of concern today is the 11-year peak cycle, of which the sun now is entering, resulting in extreme solar storm activity.  Some solar physicists predict the current cycle of storms may have greater magnitude than any before, including the record solar maximum, chronicled over 150 years ago, in the year of 1859.

Why should anyone care if the solar storm activity becomes more intense than any other time in recorded history?  Simply stated‑‑‑civilization as we know it, could be stopped in its tracks or altered to resemble something not recognizable.

Imagine not being able to turn on lights for illuminating your home or office—communication by phone, email and social media all gone, with no guarantees as to when it could or would be back online. There’s other more challenging issues regarding basic food production and distribution. The cited scenarios are extreme, but are possible consequences from a major solar storm. These intense solar disruptions are known as a “coronal mass ejection” (CME), which could knockout virtually any technology, requiring electricity.  This event could take away most of the technology we depend on and ironically transport our way of life back to the time when the last great CME hit.

If you had a window, which peered back-in-time to the end of August, 1859; you’d see a developing western society on track with an industrial revolution in full-motion.  Harnessing the new wonders of steam energy was nearly complete, however, electrical energy barely had reached its first phase of infancy.  Few applications for electricity existed, except for a remarkable one in the form of instant communication.  By sending electrical pulses through copper wires to a remote electromagnetic receiver, messages were transmitted instantly over great distances. The telegraph could be considered a 19th century equivalent of today’s Internet. This system used a basic, universal binary code developed primarily by the American artist, Samuel F.B. Mores.  By the mid 19th century, scientist demystified electricity’s secrets, and inventors found ways to harness it for communication using “direct current.”

As the summer heat of September approached the northern hemisphere: a series of solar storms increased with startling intensity; producing extreme Northern Lights, which appeared in unlikely places, such as the Caribbean near the equator.  Inhabitants reported in Northeastern America of using the intense Northern Lights to read newspapers with, during the dark hours of night.  Other stories mention groups of people being awakened by this strange, bright light and believing it was actually morning.  All over the World, compasses used for navigation (the rough equivalent of today’s GPS) were no longer giving accurate readings as the Earth’s geomagnetic forces were being distorted by the solar storms energy.

Sunspots were first documented by Galileo in the 17th century, these solar disturbances contribute to solar storms.

Sunspots on the sun’s surface, contributes to forming solar storms, of which Galileo had first observed in the 17th century and by 1745 solar flares were well documented.  Up until 1859, the solar storms only known effects on humans were in producing dazzling display of cosmic fireworks, located far into the northern and southern hemispheres.

The uninformed, industrial age public had no reason for concern as the peak of the solar storm began arriving on September 1st and 2nd.  These extreme, violent sun flares, hurled enormous magnetic clouds of plasma into space, known as a—coronal mass ejection (CME). This CME solar storm became known as the Carrington Event, named for a British astronomer, who first recognized and identified its geomagnetic effects on Earth.

Solar ejections normally take three to four days before reaching Earth, but this extreme burst had a hyper-velocity, which took less than 18-hours for the shock waves to compress the Earth’s protective magnetic field.

 As a surge of solar electromagnetic energy overpowered and broke through part of the Earth’s own protective magnetic field, alarming events began happening.  First, came a series of random, garbled telegraph signals being picked up—which mysteriously, had not been sent by an operator—then reports of telegraph receivers violently bursting into flames —setting secondary fires to office papers along with telegraph lines themselves. Jolts of electricity nearly electrocuted some operators while attempting to disconnect the system’s electrical batteries; even with their disconnection, frenetic signals continued out-of-control from massive energy overflows—the geomagnetic super-storm was sending dangerous charges of electricity through a vast network of copper lines. The geomagnetic storm caused by the sun, devastated an emerging communication infrastructure and severely set back its development.

This record solar storm event appeared on the scene, well before societies and industries realized electricity’s great potential—unlike today with electricity as an essential necessity in just about every part of the technology we use and take for granted today.

Until recently, I’ve always looked forward to the Northern Lights dazzling arrival. I recall my first  Aurora Borealis encounter shortly after graduating from college, while on a road trip to the Olympic Rain Forest. Camping out in the Olympic Mountains, the northern sky began glowing at twilight with vivid illuminating curtains moving until they were flashing directly overhead. I kept watching the surreal specters until they exited out of view an hour later.

The next time I viewed these mysterious lights happened on a photography assignment to the “North Slope” oil fields, located above Alaska’s arctic circle. The Earth’s natural magnetic field, which protects the planet from much of the sun’s solar radiation, is weakest near the Earth’s polar regions; allowing for solar winds to enter and interact with our atmosphere to create the Aurora—this is why the cosmic lights are viewed while looking north, in the northern hemisphere and the reverse for the southern hemisphere.  

Captivated by the up-close experience of the Aurora’s light; I endured the extreme outside temperature which was minus 40 degrees.  Facing frigid arctic weather, I photographed the light show, until the springs controlling my camera’s shutter began to freeze up.

Actually today’s digital cameras make it easier to photograph the northern lights.  Digital cameras, especially high-end, professional versions are much more low light-sensitive than film camera were and have a better tonal-dynamic-range.  My all-time-favorite Northern Lights experience was in Eastern Washington, where I was at a ranch in the Okanogan region.  This encounter was so full of effervescent bright light, it woke up birds from a night sleep as they began to take flight while making loud, chirping sounds as if dawn had arrived. In this environment, with no light-pollution from a city, while located at a 5,000 foot elevation, made for an ideal night-sky photography experience.

In 2003 was one of the greatest solar flare events in contemporary history —the Northern Lights were so intense, I easily photographed them from my home in Western Washington.   Despite the bright lights coming from a nearby city, they did not obscure the luminous Aurora Borealis view. The referenced photos of the Northern Lights were taken from my home, are featured in this essay.  In these images you can see the glowing transient—green, red and purple color produced, as the sun’s energy interacts with various gas elements which comprise the Earth’s atmosphere.

The reason for solar flare events to peak in 2013 or possibly in early 2014, is due to the sun’s magnetic field reversing polarity within an 11-year cycle.  It takes a full 22-years for the sun’s magnetic fields to return to their original pole positions, which then completes a full cycle. Apparently, near the 11-year cycle, which our sun has entered, the solar flare activity becomes more intense.

The 1859 record solar maxim was on one of these 11 years cycles. Another theory connected with returning mammoth CMEs is the high quantity of sunspots recorded over the past couple of decades.  Sunspots appear when portions of our star’s internal superheated matter, mixes with cooler regions above the surface; creating intense magnetic fields. These magnetic fields are swept up, and then forced below the surface, where they become recycled by the sun’s complex quantum mechanics.  Energy from sunspots becomes amplified, creating even more extreme magnetic fields as they resurface form a four or five-year subsurface journey.  These magnetic disturbance interact to create concentrated arcs of solar energy, which are so powerful they are ejected outward in the form of solar flares.

Other methods scientist use for estimating the potential scale of this year’s solar storms is to examine recent solar cycles—looking for progressive trends or patterns for their projections.

In 1989 a CME hit the Earth with intense energy particles, causing the electrical grid in Quebec, Canada, to crash, which plunged millions of people into darkness.  This event took place during the “cold war” and it caused severe shortwave radio disruptions with Aurora Borealis sightings in south Texas.  Some believed the disruption was the beginning of a Soviet nuclear first strike, using intense electromagnetic energy to disrupt communications and electric grid infrastructure.  In reality the blackout was caused by a CME, created from the  sun’s own nuclear energy.  Acting like a giant teetering domino, the event triggered a chain reaction, taking down interconnecting electric networks within a large region of North America—but even this event was not on a scale with the mega storm of 1859.  That’s why some scientist view the 30-year old, Hydro-Quebec solar storm as a telegraphed alarm warning.

With demand for power growing even faster than the grids themselves, modern networks are sprawling, interconnected, and stressed to the limit—a recipe for trouble, according to the National Academy of Sciences:The scale and speed of problems that could occur on [these modern grids] have the potential to impact the power system in ways not previously experienced.” There’s fear the expanded network of lines creates a bigger antenna enabling it channel a geomagnetic induced current (GIC.)  NASA has become alarmed with how much more vulnerable the North American power grid has become, it co-developed an experimental program called “Solar Shield” to help warn utilities of impending geomagnetic storms.

Since 1989 we have become much more dependent on microelectronics, with their intricate architecture of high density, compressed components.  Having unshielded microcircuits squeezed tightly together increases the odds of severe damaged caused from geomagnetically induced currents (GICs).  The 1989 solar storm event damage at least 30 satellites, some  of which were beyond repair.  Solar storms can easily scramble the intricate digital components of low-orbit satellites and disorient them from knowing which way is up or down.

In theory, with enough warning, orbiting satellites are safely switched off or pointed away from the sun’s destructive radiation.  Early warning satellites are now positioned at a L1 point, geostationary orbit to monitor solar storms and announce threatening CME activity.  Solar Shield Project is a collaboration between NASA Goddard Space Flight Center and Electric Power Research Institute (EPRI).  The purpose of this project is for establishing a forecasting system, which can be used to lessen the impact of geomagnetically induced current (GIC) on high-voltage power transmission systems. (Please see associated link bellow for more information.)

The Earths atmosphere and magnetic fields normally protects us from the harmful solar storm’s radiation.  Higher exposure to the sun’s powerful energy becomes a factor once you start climbing in elevation. Radiation exposure is a secondary reason why airlines must divert from their trans-polar routes, to avoid excessive exposure.

Disruption of GPS and radio communication from the solar storms is the primary reason for flight diversions.  Astronauts working above Earth’s protective atmosphere face the greatest risk from such effects caused from solar flares. These stellar storms have shortened or alter a number of space missions in the past. The Russian’s space station MIR in 1993 had an unfortunate encounter with a solar storm, exposing the cosmonauts to dangerous levels of over 10 times the normal allowable radiation limits.                              

What could be warning signs or likely indicators of an impending maxim solar disturbance?  So far, NASA and NOAA are the only government agencies I’m aware of who’s keeping the public informed with the most current status of solar flares.

At the end of this essay are links, which give important information on this year’s solar storms including: NASA and NOAA sites, which monitor hourly conditions. If solar storm activity becomes alarming, NASA will most likely be out front with the reports and major news networks will probably soon follow.  If a certain threshold of (x-rays) is reached within the first phase of a major solar storm, the FAA will order cancellations of airlines with trans-polar flights.  Disruption of shortwave radio communication is the earliest indicator of a severe storm.  If conditions become dire, all but emergency flights would be grounded indefinitely.

 - Image courtesy of NASA

– Image courtesy of NASA

If NASA issued orders to evacuate astronauts from the International Space Station (ISS), this would probably be a strong indicator the radiation levels from the second phase of a storm are severe. Supposedly the center of the Space Station has enough mass to offer some protection from this type of event, but NASA would probably play it safe and order emergency return flights, that is, if there was enough time. Seeing the Northern Lights close to the equator would be a strong indicator the Earth’s geomagnetic fields were being overrun, meaning the big one might be arriving.  If a major CME  (the particle phase of a storm) 752830main_iss036e002224_fullcomes our way, there may be 18 hours or less to prepare.  On the positive side, unlike a major earthquake or other natural disasters we at least would have some time to prepare and be ready to brace for a worst case scenario.

.

It would be an unfortunate irony if the sun made our world go dark, but here’s how it could happen. The National Academy of Science produced a 2008 report warning, if we had another major solar storm like the 1859 Carrington event, we would have extensive blackouts with the loss of key transformers.  Our Nation’s electrical utilities have in all total, less than 400 major transformers to supply all the power we use. There are no longer any companies within the U.S., which make massive sized transformers. If an extreme solar maxim arrives, we’ll probably be on a long waiting list (along with the rest of the world) for key replacements. Given enough time, these massive electrical components can be built domestically, but it could take years — a major obstacle and a catch-22 — transformers require huge amounts of electricity for their construction.

Even without a disaster happening, electric utilities face a minimum of two-years from when a major transformer (average cost 4 million dollars) is ordered and finally installed (according to a global, equipment insurance company.) Critical shortages of raw materials and trained workforce for transformer installation contribute to this problem. Hopefully the utility company supplying your community power, learned a lesson from the 1989 Hydro-Quebec blackout. There are preventive strategies to guard against geomagnetic induced current (GIC)—such as a “solid ground system;” which is an industry design to help protect electrical infrastructure from a nuclear induced: electromagnetic pulse (EMP.)

An EMP creates a tremendous amount of electromagnetic energy, similar in some ways to a naturally occurring solar storm CME.  The next best plan for the electric utilities will be to disconnect the power lines from any plant’s key equipment threatened by massive surges of electromagnetic energy.  Just disconnecting lines could prove ineffective if a surge was big enough. The  connecting leads to a transformer could possibly be used as an antenna for attracting the surge of electromagnetic energy.

There is something you can do to protect your own electrical devices from the devastating effects of either a solar CME or a nuclear EMP.  You can easily, with very little cost, build what is known as a Faraday cage to protect your equipment.  For instance for: a radio, cell phone or batteries (all of which are vulnerable to massive electrical surges;) you first wrap the devices in thick plastic like a freezer bag or bubble wrap, then use three layers of aluminum foil to completely wrap the devices so there are no gaps. The plastic acts as an insulator from the metal foil which intern deflects energy.

I’ve include a web link to an electrical engineer’s website who explains the procedures and others for protecting against Solar CMEs or EMPs. You can also do a google search for Faraday cage.  Unplugging your electrical equipment from outlets is a good safety precaution, which ordinarily could protect you against a lighting storms, but will probably not prevent your electronics from being fried from a major CME.  If you remembered what happen to the telegraph system, which was hit by the largest CME in history in 1859, the electromagnetic energy used the unconnected wires from the telegraph as an antenna to channel its force through. Tesla, the great Hungarian born inventor who championed AC electrical power, proved electrical transmission could efficiently be sent through air without using power lines.

One other critical infrastructure which could be devastated from an CME or EMP is major pipelines.  The metal in power-lines an pipelines is a great conductor for geomagnetic energy. Testing has shown electromagnetic surges can effect the controls for monitoring pressure and flow of buried high-pressure pipelines. In Russia, it was found past solar storms have caused severe corrosion effects on some of its pipeline.  Apparently, the corrosion effects is not as much of an issue in the North America because the pipes are manufactured using a more advanced process.

For most civil preparedness involving impending emergencies, it’s best to listen to experts who advise: always have enough: food, water and flashlights on hand to survive what happens after a major natural disaster event occurs.  A good plan for how to keep in contact with family members will be critical if a major solar storm event occurs; especially with an extreme maxim CME, as communication equipment will be toast unless it was properly shielded from the event. Self-reliance is a good policy to help sustain individuals and families from the effects due to a major solar storm or catastrophe. Most  common-sense preparations mentioned in this essay are basics ones every family should have in-place, in case of an earthquake or any major disaster occurrence.

Will a decimating solar storm hit in 2013 or 2014?  No one can forecast for certain how severe this solar maxim will or will not be—however, if there’s enough strength behind the solar storm and its path becomes directly aimed towards Earth, then it could be the greatest challenge civilization has ever faced. Learning from the lessons of history has been an essential part of the human experience—we successfully thrive in the moment by learning from histories past events. This seems so obvious for self-preservation, but it involves a fine-tuned balancing process—between what we carefully choose to forget of painful tragedies, versus remembering our own inspirational triumphs. Ideally, the value of any-type of learning, produces confidence and preparedness for future encounters, situations and events.

Given a solar CMEs disruptive potential, it’s in everyone’s self-interest to judge the potential risk; then have an action-plan to help lessen the life-altering impact from an extreme-act-of-nature.  Personally, I don’t sense any impending doom with this year’s solar maxim.  By doing basic research, to become educated on solar events, I gained knowledge on the potential for some disruption to our infrastructure. With informed awareness, I’m confident I’ve taken the necessary precautions for my family to best be ready for this and any future natural disasters, which may arrive from over the horizon. ~

The Aurora Borealis or Northern Lights have been revered and feared by ancient and prehistoric cultures. The phenomena are created from solar winds colliding and interacting with Earth’s atmosphere

Bellow are useful links related to the subject solar storms including official government agencies including: NASA and NOAA.  Other sites and articles include those from: National Geographic, Washington Post and Christian Science Monitor.

You’re encouraged to click on the links below to learn more about solar storms. ↓

A most beautiful video time-lapse of the Aurora Borealis  http://vimeo.com/11407018

http://www.swpc.noaa.gov/

http:science.nasa.gov/science-news/science-at-nasa/2003/23oct_superstorm/

Solar Shield Project is a collaborative project between NASA Goddard Space Flight Center and Electric Power Research Institute (EPRI).  http://ccmc.gsfc.nasa.govAn electrical engineer, who gives great information on how to protect your electrical components from EMP blast, produces this site. He also offers an expert opinion of what to expect will happen to our Nation’s electrical grid, if such an event occurs. http://www.futurescience.com/emp/emp-protection.html

http://news.nationalgeographic.com/news/2011/03/110302-solar-flares-sun-storms-earth-danger-carrington-event-science/

http://www.csmonitor.com/Science/Cool-Astronomy/2010/0809/Could-a-solar-storm-send-us-back-to-the-Stone-Age

http://www.flixxy.com/solar-storm-1859.html

http://news.nationalgeographic.com/2012/03/120308-solar-flare-storm-sun-space-weather-science-aurora/

auroras-flights-sun-earth-space-science

[contact-form] [contact-field label='Name' type='name' required='true'/] [contact-field label='Email' type='email' required='true'/] [contact-field label='Website' type='url'/] [contact-field label='Comment' class="GINGER_SOFATWARE_noSuggestion GINGER_SOFATWARE_correct">textarea</span>" required='true'/] [contact-field label='New Field' type='text'/] [/contact-form]