Blinded By Light, In The Middle Of Night

 
Multimedia eLearning program by: David A. Johanson © All Rights  — Second Edition

The author is a multimedia specialist, CTE instructor and a former Boeing scientific photographer. For an alternative formatted view of this program, please visit — www.ScienceTechTablet.wordpress.com

 

My photo wingman, Rick Wong and I headed into the heart of darkness in a quest for the Perseid meteor showers. Mount Rainier National Park, was our destination to use its iconic landmark for framing an infinite field of stars—far from the glare of city lights. Traveling at night in Rick’s new hybrid Ford Fusion, equipped with “information technology”—voice navigation, made it easy finding the park without using a map.

Arriving at our location, luminous stars lit up the night as expected, but we were surprised by some uninvited competition, which nearly stole the show.

A stunning view of Mount Rainier reflected in Reflection Lake, with the summer stars overhead. The pink and orange glow on the left side of the mountain is light pollution emitted from the City of Tacoma, approximately 65 miles northwest.

We found an ideal location above Reflection Lake to begin our photo shoot, with one of the Cascade Mountain’s most famous stratovolcano in the background. An unexpected warm light was glowing behind Mount Rainier, which I reasoned, was a faint remnant from the earlier sunset. However, the sun had set at least four hours earlier, so it couldn’t be the source of the illumination. Rick suggested “its light coming from the City of Tacoma,” located about 65 miles away. During a 20-second long exposures used to take an image of the snow-capped mountain, I began thinking about the effects caused by light pollution.
With a bright moon rising, we worked fast to keep up with the changing light, until its intensity eventually overpowered the stars.

Just now, the moon was rising higher into the night sky, it too was causing us to shift focus on what to photograph. Like a giant diffuse reflector, the moon reflected soft, filtered light onto a previously dark, formless landscape. Moonlight was beginning to compete with the canopy of stars’ brilliance, partially masking crystal clear views of the Milky Way, along with some meteor sightings. So being photo opportunist, we used the moonlight to illuminate shadow-detail on Rainier’s south face.

Like some sorcerer conjuring an intense cauldron of red light, the photographer adjusts his digital settings before Mount Rainier and her crown of stars above.

A Peaceful Paradise Lost                                                                                             There’s a tranquil feeling while in the process of taking long exposures at night; it’s normally quiet and not many visual distractions overwhelm the senses or interrupt your focus. I personally enjoy these rare opportunities of solitude, to visualize an image, using a minimal, Zen like perspective.

 

When a distraction, like a car suddenly rounding a corner occurs, it’s often an annoyance, which takes you out of the moment. My moment was taken by clusters of cars, with glaring lights as they came around a turn… just as the moon illuminated the mountain, as it was reflected onto a perfectly still lake.. Their headlights flooded the calm mirror-like water and stands of old growth trees beyond with glaring intensity— as I used my hands in an attempt to shield the lens from light flare. Finally, the cars diapered into the darkness with no more approaching vehicles until dawn.

Photo-illustration of micro light sources, which can cause light pollution by unintended spill-light.

Moving above the lake to find new angles for interesting compositions, I took notice of something not seen before. Lights of various colors were coming from photographers bellow me, created by their digital camera’s preview monitors and infrared sensors for auto focusing. With the low light-sensitive Nikon cameras I was using, these multicolored monitor lights, appeared like a bright flare on the long exposure images. Now, I had one more unwelcome light source to avoid, which required strategic timing in the photo’s exposures to minimize glare.

Again, my thoughts returned to the issues of light pollution. Recalling the time back home, when I attempted to photograph some constellations at night, only to have a neighbor’s motion sensor flood light, overwhelmed the backyard with brightness. The piercing light  forced me to find the last remaining, isolated shadowed corner of the yard.

My reminiscing was cut short by a distant, but bright, pinpoint of light from bellow Mount Rainier’s summit. Flashlights from mountain climbers near Camp Muir shined bright—like lighthouse beacons from the semi darkened rocks and glacier fields on the mountain. Even the faintest light can shine bright at night as was noted during World War II, when warships were forbidden from having any exterior lights on at night — including a lit cigarette, which posed a risk of being spotted from great distances by enemy submarines.

Lights from mountain climbers on the approach to the summit of Mount Ranier.

Encountering the Universe’s Brilliance                                                                       The improper, overuse of outdoor lighting has erased one of our basic and most powerful human experiences—encountering the universe’s brilliance with its galaxies and billions of stars shining in the night sky! Making visual contact with our own galaxy, the Milky Way, is one of the greatest shows seen from Earth.

 

In less than a century of civilization’s reliance on electric technology: two-thirds of the U.S., half of Europe and a fifth of people in the world—now live where they cannot see the Milky Way with the unaided eye. You can appreciate how we lost our stellar view by seeing aerial photos taken from orbiting spacecraft and the International Space Station. These startling images taken of the Earth at night, reveal a man-made galaxy of artificial light, which cancels out much of the real one in the sky above.

.

Some years back, I was a part-owner in a small recreational ranch, in Eastern Washington’s, Okanogan County. Brining friends over from Seattle, it was often nighttime when we arrived. The instant of exiting the cars, was a startling event as the Milky Way’s intensity of light overwhelmed your senses. The “ranch” was remotely located, at about 5,000 feet in the mountains, near the Canadian border and 30-miles from the closest town. Days would go by where we didn’t see a car or even hear a small airplane go overhead… it was one of the most refreshing experiences of my life, to perceive nothing except wind going through trees and seeing only starlight at night for hours at a time.

Image courtesy of NASA

A television interview with the director of a major observatory in Southern California recounted when Los Angeles had its last electrical blackout —people were calling 911 and his observatory, with reports of strange, bright objects in the night sky. Actually, what the callers were seeing for the first time, was the Milky Way’s canopy of shining stars.

   

Image courtesy of NASA.

Besides forfeiting a life inspiring, wondrous view of the cosmos, there’s tangible losses associated with light pollution. Conservative estimates are—30 % of U.S. outdoor lighting is pointed skyward in the wrong direction, which wastes billions of dollars of electricity. The unnecessary practice of lighting clouds, burns more than 6 million tons of coal, which adds: harmful greenhouse gas emissions, along with toxic chemicals into our atmosphere and water.

Further scientific studies indicate wildlife is suffering the ill effects of excessive urban lighting. The City of Chicago has taken measures to turn off or dim its high-rise lighting to enable migrating birds to continue normal migration patterns. An increase in species of insects attracted to light along with rodents, which are drawn towards bright city lighting, is a growing concern to many scientists.

Heavy equipment product shots never look quite this good. Scheduled improvements to the viewing area above Reflection Lake, had some equipment, taking a nap, before going to work when the sun came up.

Education Is the Solution to Light Pollution                                                                    The reason light pollution continues to expand is, we have grown accustomed to its seemingly benign presence. After all, probably no one can point to a single case of a person killed from overexposure to light pollution. However, there is a growing correlation of health risks associated with overexposure from artificial light. Some of the main symptoms include, physical fatigue and damage to eyesight. This lighting health risk was recognized in 2009, when the American Medical Association officially established a policy, which supports the control of light pollution.

.

Municipal lighting codes are beginning to help define and eliminate unnecessary light pollution. Lighting enforcement can create a more pleasing environment, by reducing excessive urban lighting, which causes fatigue from glare and cuts down on unnecessary electric utility cost. Redirecting outdoor lighting away from the sky where it is needlessly wasted is a simple and easy solution.

Installing motion detector security lights are another efficient and productive mitigation strategy. For security purpose, a light, which is triggered by motion is much more effective for crime prevention than a continuous floodlight. Motion detector lights have a clear advantage of focussing our attention onto an area, which is triggered by a sudden change from darkness to bright-light.

The light intensity of the Milky Way is a breathtaking wonder to witness at night —` unrestricted light-pollution has faded this wonder from what was once a valued human experience. You can see the Andromeda Galaxy in the right 1/3 of the frame. Nikon D700 – Nikkor 28mm lens @ F3.5 @ 20 seconds August 11 11:48 p.m.

 

The encouraging news is… the key to reducing light pollution is a simple matter of basic education and action. Public awareness of over-lighting requires a minimal expenditure, which will quickly pay for itself in energy savings and perhaps return the opportunity to experience one of the greatest shows seen from earth. ~

.

Light pollution glossary:

Urban Sky glow: the brightening of the night skies over municipalities and communities, caused primarily from high-volumes  of collective, reflected light and poorly directed light, which is pointed upward or not shielded properly.

Light trespass: light falling or spilling into areas where it is not intended. Also know as “spill light” – as in municipal streetlights, which go beyond the intended illumination of street signs and sidewalks, causing an unwanted exterior lighting of residential homes.

Glare: A direct, bright or harsh light, which causes discomfort or pain. The effects of glare can be reduced or eliminated with the use of a shield or filter.

Uplight: Light angled inappropriately upward towards the sky and serving no purpose. Uplight washes out the night sky and reduces opportunities for astronomers and star-gazer to enjoy the beauty of the planets, moon and stars.

Light Clutter: Poorly planned, confusing and unpleasant use of grouped lights usually associated with urban or retail lighting. Retail business often trying to outdo the competition by using overly bright, multicolored or pulsating lights.

Links to articles & information on light pollution:

http://news.discovery.com/animals/light-pollution-a-growing-problem-for-wildlife.html

www.darksky.org/assets/documents/is001.pdf

www.njaa.org/light.html

www.skymaps.com/articles/n0109.html

en.wikipedia.org/wiki/Light_pollution

ngm.nationalgeographic.com/geopedia/Light_Pollution      

There’s Nothing New Under the Sun, or is There?

 Photos & multimedia e-Learning essay by: David Johanson Vasquez © All Rights — Second Edition
   

Please note: This essay is a follow-up from my chronicle on solar storm effects of the 1859 Carrington Event on an industrial era society— forward to the postmodern, microelectronic world of today. To better understand the context of this article, it’s suggested you view my introduction solar storm essay found  by selecting the March 2012 archives found on the left side of this page.  The National Academy of  Sciences (NAS) (funded by the U.S. Congress) produced a landmark report in 2008 entitled “Severe Space Weather Events— Societal Impacts.” It reported how people of the 21st-century depend on advance-technology systems for daily living, The National Academy of Science stated— Electric power grids, GPS navigation, air travel, financial services and emergency radio communications can all be knocked out by intense solar activity.  A century-class solar storm, the Academy warned, could cause twenty times more economic damage than Hurricane Katrina. [1] Some leading solar researchers believe we are now due to a century-class storm.

Photo courtesy of NASA

July 15, 2012 Aurora Borealis sighting near Everett, WA. This event was caused from an X-class solar storm, which occurred within a week of another X-class storm (X-class being the most severe classification). The 11-year solar cycle is approaching a solar maximum around 2013, this will most likely bring more intense solar storm activity.

.

Depending on your interpretation of the essay’s title, there is nothing new under the Sun when it comes to our neighboring star’s behavior. Since our Sun left its infancy as a protostar over 4 billion years ago, by triggering a nuclear fusion reaction and entering a main-sequence stage, its solar mechanics have maintained relatively consistent patterns. What has not remained the same is the evolution of life on Earth, in particular, our species’ development of a civilization which now is dependent on a form of energy called electricity.

The name “Aurora Borealis” was given by Galileo Galilei, in 1619 A.D., inspired from the Roman goddess of dawn, Aurora, and Boreas from the Greek name for north wind. First record siting was in 2600 B.C. in China. Collision between oxygen particles in Earth’s atmosphere with charged (ionized) particles released from the sun creates green and yellow luminous colors beginning at altitudes of 50 miles (80 kilometers). Blue or purplish-red is produced from nitrogen particles. The solar particles are attracted by the Earth’s northern and southern magnetic poles with curtains of light stretching east to west.

.

Reaching back only a few generations into the 20th Century, electricity was considered a luxury—today ordinary life would be impossible without it! And that’s where our beloved Sun comes into the picture, to potentially cast a shadow on our dependency of electricity. Solar storms have been a reoccurring event before time began, but they didn’t affect people outside of providing a fantastic, special effects light-show                                       until a critical event happened in 1859.

In the mid 19th century, while the industrial revolution was near full development, the resource of electric power was first harnessed. Shortly after the electricity was put into use for    communication using  telegraph technology (a 19th century equivalent of the Internet), is when the Sun revealed                                                                                                  a  shocking surprise in the most powerful solar storm ever recorded, which was known as the Carrington Event.

The year 1859 was near a peak in the Sun’s 11-year solar cycle, when the Sun’s polarity readies for reversal. Approaching  the end  sequence of this magnetic shift, brings a solar maximum , which produces violent solar flares and ejects plasma clouds outwards into space. If the flare occurs in a region opposite of Earth, a Coronal Mass Ejection (CME) may send a billion-ton radiation storm towards our planet. Fortunately, the Earth is protected by a robust atmosphere and a magnetic field surrounding the globe, which protects us from most  solar winds. However, an intense solar storm with its charged plasma cloud  can overwhelm our planet’s protective shields. When an extreme solar storm’s magnetic energy contracts with our planet’s protective magnetic field, it creates geomagnetic induced currents (GICs). GICs are massive amounts of electromagnetic energy which travel through the ground and ocean water, seeking the path of  least resistance in power lines, pipelines and rail tracks.

In the extreme solar storm of 1859, the Aurora Borealis was seen near the equator and it was reported  people were able to read newspapers outdoors at midnight. Navigational compasses (19th century version of GPS)  throughout the world spun-out-of-control due to the flux of electromagnetic energy.

                                                 

A more recent, dramatic example of a solar storm’s impact is the 1989, Quebec-Power blackout. The geomagnetic storm created was much milder than the solar maxim of the 1859, Carrington Event. However, it’s a chilling preview of what a complex, unprotected  electrical grid faces when up against the forces of the super solar storm. Quebec-Power’s large transformers were fried by the GICs overloading its grid network. Electrical grids and power-lines  act like a giant antenna in pulling in the  massive flow of geomagnetic energy. In the 1989 solar storm incident, over 6 million people lost power in Eastern Canada and the U.S., with additional connecting power grids on the verge of collapsing.  Again, the powerful 1989 solar disturbance was not the 100 year super storm, but a small preview of what can if  preparations are made to protect the power grid.
Solar scientist are finally able to put together how extreme storms follow an 11 year solar maxim cycle, like the one we’re now entering, and should peak sometime in 2013. Already this year, six major X-class solar storms, the most intense type, have occurred since January. Within one week of July, we had two of the X-class storms, with the last one pointing directly at Earth.  On July 13, 2012, the Washington Post’s Jason Sometime, wrote an article with his concerns on  how NASA and NOAA were sending out inconsistent warnings about the solar storm from July 12.
The federal agency FEMA, appears to have learned its’ lesson from Hurricane Katrina and being proactive with a series of super solar storm scenarios. These scenarios  illustrate the many challenges towards maintaining communication and electric power, based on the strength of the solar event. Without reliable power, food distribution will be problematic. Today we have less reliance on large warehouse  inventories and more dependency on — “just in time” food delivery. According to Willis Risk Solutions (industrial underwriter insurer for electric utilities) and Lloyds World Specialist Insurer (formerly LLoyds of London), there’s a global shortage of industrial large electric transformer, which now are only made in a few countries. It would take years to replace the majority of the World’s electric transformers and technically require massive amounts of electric power, which ironically, would not be available in an event of an extreme geomagnetic storm.
.
Select companies and  the federal agencies mentioned in this essay, are overall, considered highly respected and cautious in forecasting major threats to societies and national economies. All of the mentioned government entities and scientific organizations realize it’s not a matter  if, but when will the next super solar storm be aimed and sent to Earth.
The good news is we can still take the necessary precautions to protect our society and the economic future from this clear and present threat. Here’s a link to the 2008 National Academy of Science (funded by congress) report:  Severe Weather—Understanding Societal and Economic Impact: A Workshop Report (2008). This group meets every year to work on preventative strategies. The report contains cost-effective protection plans for electric power grids, please see the link provided.
.
.

Chronicles of the largest solar and geomagnetic storms in the last 500 years.

1847  — First geomagnetic storm caused by a solar flare, which inadvertently was documented using emerging telegraph technology.  Reports were the telegraph system was sending clearer signals by disconnecting its batteries and using the geomagnetic energy from the storm.  First published effects caused from geomagnetic storm.

1859  — Becomes known as the Carrington Event; telegraph system becomes inoperable worldwide as some offices are set on fire from supercharge telegraph wire. This is the largest geomagnetic storm in 500 years. Scientists begin documenting future solar storm activity.

1921 — Know as the “Great Storm” worldwide telegraphs and radio signals become inoperable and cables are burned out. This geomagnetic storm is likely to occur approximately 100 years.

1989 —  Major solar flare erupts on the surface of the Sun opposite of Earth; a resulting solar storm triggers a massive geomagnetic storm, which overwhelms Quebec’s power grid. As a result of the storm, six million people instantly lose power as a U.S. Northeast and Midwest connecting grids come within seconds of the collapse. As a result, the Canadian government becomes proactive and develops strategies to  protect its power grid from future solar storms.

2003 — Know as the “Halloween Storms” this series of geomagnetic storms disrupted GPS, blocked High Frequency (HF) radio and triggered emergency procedures at various nuclear power plants. In Scandinavia and South Africa, section of  power grids were hit hard, as many large power transformers were destroyed by the powerful geomagnetic induced currents (GICs).

Chronological  Reports and News Accounts of Solar Storms From 1859 to 2003

This is one of the most comprehensive list of solar storm accounts on the web. The site chronicles strange solar storm happenings; such as reports in the early 1960s  with TV programs suddenly disappearing and reappearing in other regions. Other unsettling reports include the U.S. being cut off from radio communication from the rest of the world during a geomagnetic storm. Please see link below:  http://www.solarstorms.org/SRefStorms.html 

 

Solar Storm Acronyms and Terms

ACE — Advance Compositional Explore = NASA satellite used in detecting and monitoring potential damaging solar flares and CMEs.

AC — alternating current

BPS — bulk power system 

CME — coronal mass ejection = caused from a solar flare near the surface of the sun, which sends  a billion-ton radiation storm out into space.

EHV — extra high voltage

FERC — United States Federal Energy Regulatory Commission

GIC — geo-magnetic induced current = an extreme solar storm’s magnetic energy contracts with our planet’s protective magnetic field, creating electric current which conducts or travels through the ground or ocean water.

GMD — geo-magnetic disturbance

GAO — Government Accounting Office

GPS — global positioning system = A series of satellites positioned in an Earth, geostationary orbit for use in military and civilian navigation

NERC — North American Electric Reliability Corporation

NASA — National Aeronautics and Space Administration

NOAA — National Oceanic and Atmospheric Administration

POES — Polar Operational Environmental Satellite

SEP — solar energetic particle

SOHO — Solar and Heliosphere Observatory (satellite)

STDC — Solar Terrestrial Dispatch Center (Canada)

STEREO — Solar Terrestrial Relations Observatory (Satellite)

.
.
Please view this most beautiful video time-lapse of the Aurora Borealis http://vimeo.com/11407018
.
.

Sources and Links

NASA Resources

Illustration courtesy of NASA

A useful illustration for understanding NASA’s efforts with Heliophysics System Observatory
Detail explanation of space weather and NASA monitoring can be found at the following link:   http://www.nasa.gov/mission_pages/sunearth/spaceweather/index.html
NOAA Solar storm monitors sites:
NOAA is the nation’s official source of space weather alerts, monitoring and alerts. The following NOAA site provides real time monitoring and forecasting of solar and geophysical events.  http://www.swpc.noaa.gov/

NASA and NOAA sites (post warning of impending dangers to the electrical grid from solar storms producing extreme geomagnetic induce currents (GICs) on Earth). http://science.nasa.gov/science-news/science-at-nasa/2009/21jan_severespaceweather/ http://science.nasa.gov/science-news/science-at-nasa/2010/26oct_solarshield/ http://www.noaawatch.gov/themes/space.php

http://www.guardian.co.uk/science/2012/mar/18/solar-storm-flare-disruption-technology

http://www.wired.com/wiredscience/2012/07/solar-flare-cme-aurora/

http://www.usfa.fema.gov/fireservice/subjects/emr-isac/infograms/ig2012/4-12.shtm#3

My solar storm articles from February www.bigpictureone.wordpress.com  and in the March edition of  www.ScienceTechTablet.wordpress.com  present a comprehensive picture of how solar flares and solar storms originate, with the potential of producing geomagnetic storms on Earth.  If these geomagnetic storms are severe enough, they can threaten our way of life. Some strategies and common sense precautions are offered  for civic preparedness in the case of an extreme solar event.